Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5<-21\)<=> \(x\ge8\) hoặc \(x<-13\)
2)
a) |2x-3|>=0 => A>=0-5=-5 => Min A=-5 <=> x=3/2
b) \(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\Rightarrow B\ge2+5=7\)=> MinB=7 <=>x=1
3)
\(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\Leftrightarrow A\le0+7=7\Rightarrow MaxA=7\Leftrightarrow x=-\frac{1}{2}\)
b)
th1: nếu x<-3/2 => B=-2x-3+2x+2=-1
th2: nếu \(-\frac{3}{2}\le x\le-1\)=> B=2x+3+2x+2=4x+5
ta có:\(-\frac{3}{2}\le x\le-1\Rightarrow-6\le4x\le-4\Leftrightarrow-1\le4x+5\le1\Rightarrow-1\le B\le1\)
th3: nếu x>-1 => B=2x+3-2x-2=1=>
Max B=1 <=> x>-1 hoặc \(-\frac{3}{2}\le x\le-1\)
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
\(A=5-\left|\frac{2}{3}-x\right|\)
Ta có: \(\left|\frac{2}{3}-x\right|\ge0\forall x\)
\(\Rightarrow5-\left|\frac{2}{3}-x\right|\le5\forall x\)
\(A=5\Leftrightarrow\left|\frac{2}{3}-x\right|=0\Leftrightarrow x=\frac{2}{3}\)
Vậy \(A=5\Leftrightarrow x=\frac{2}{3}\)
Ta có: \(\left(x+2\right)^2=0\) khi \(x=-2\)
\(\Rightarrow GTLN\)của \(A=\frac{3}{4}\)khi \(x=-2\)
Vậy GTLN của \(A=\frac{3}{4}\)
\(A=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\\ \text{Do }\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ A=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu \("="\) xảy ra khi :
\(\left|x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow x-\dfrac{1}{2}=0\\ \Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(A_{\left(Min\right)}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
\(B=2-\left|x+\dfrac{5}{6}\right|\\ \text{Do }\left|x+\dfrac{5}{6}\right|\ge0\forall x\\ \Rightarrow B=2-\left|x+\dfrac{5}{6}\right|\le2\forall x\)
Dấu \("="\) xảy ra khi :
\(\left|x+\dfrac{5}{6}\right|=0\\ \Leftrightarrow x+\dfrac{5}{6}=0\\ \Leftrightarrow x=-\dfrac{5}{6}\)
Vậy \(B_{\left(Max\right)}=2\) khi \(x=-\dfrac{5}{6}\)
\(H=\frac{x^2+y^2+3}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}\le1+\frac{1}{2}=\frac{3}{2}\)
Tự lập luận ra GTLN của H là \(\frac{3}{2}\)
Vậy B đạt giá trị lớn nhất là 5/17 khi và chỉ khi x = 5.