K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

tương tự câu này :

Câu hỏi của Thiên Ân - Toán lớp 8 - Học toán với OnlineMath

2 tháng 8 2019

\(\hept{\begin{cases}a^3-3ab^2=2\\b^3-3a^2b=-11\end{cases}\Rightarrow\hept{\begin{cases}\left(a^3-3ab^2\right)^2=4\\\left(b^3-3a^2b\right)^2=121\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}a^6-6a^4b^2+9a^2b^4=4\left(1\right)\\b^6-6a^2b^4+9a^4b^2=121\left(2\right)\end{cases}}\)

Cộng ( 1 ) với (2  ), ta được : \(a^6+b^6+3a^2b^4+3a^4b^2=125\)

\(\Rightarrow\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)

11 tháng 12 2019

Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath

Thay các giá trị a, b, c, d vào M nhận đc giá trị M = 0

10 tháng 12 2019

\(\hept{\begin{cases}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{cases}}\)

=> \(0\le a^2;b^4;c^6;d^8\le1\)

=> \(-1\le a;b;c;d\le1\)

=> \(a^{2016}\le a^2\)\(b^{2017}\le b^4\)\(c^{2018}\le c^6\)\(d^8\le d^{2019}\)

=> \(a^{2016}+b^{2017}+c^{2018}+d^{2019}\le a^2+b^4+c^6+d^8\)

Do đó: \(a^{2016}+b^{2017}+c^{2018}+d^{2019}=a^2+b^4+c^6+d^8=1\)

<=> \(a^{2016}=a^2;b^{2017}=b^4;c^{2018}=c^6;d^{2019}=d^8;a^2+b^4+c^6+d^8=1\)

<=> \(\orbr{\begin{cases}a=0\\a=\pm1\end{cases}}\); ​\(\orbr{\begin{cases}b=0\\b=1\end{cases}}\)\(\orbr{\begin{cases}c=0\\c=\pm1\end{cases}}\)\(\orbr{\begin{cases}d=0\\d=1\end{cases}}\)\(a^2+b^4+c^6+d^8=1\)

<=>  \(a=b=c=0;d=1\)hoặc \(a=b=d;c=\pm1\) hoặc \(a=c=d=0;b=1\)hoặc \(b=c=d=0;a=\pm1\).

10 tháng 12 2019

Tại sao \(0\le a^2;b^4;c^6;d^8\le1\) Lại suy ra \(-1\le a;b;c;d\le1\)????????????????????????