Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a-11b+3c\vdots 17$
$\Rightarrow 2(a-11b+3c)\vdots 17$
$\Rightarrow 2a-22b+6c\vdots 17$
$\Rightarrow 2a-5b+6c-17b\vdots 17$
$\Rightarrow 2a-5b+6c\vdots 17$ (đpcm)
xét hiệu:A=4(9x+y)-(7x+4y)
A=36x+4y-7x-4y
A=29x\(\Rightarrow\)A chia hết cho29
mà 7x+4y chia hết cho29\(\Rightarrow\)4(9x+y) chia hết cho 29
vì (4;29)=1\(\Rightarrow\)9x+y chia het cho 29
Vậy nếu 7x+4y chiahet cho 29 thi 9x+y chia hết cho 29
Học tốt!
Ta có \(a+8b⋮11\)
\(\Leftrightarrow2.\left(a+8b\right)⋮11\)
\(\Leftrightarrow2a+16b⋮11\)
\(\Leftrightarrow2a+5b+11b⋮11\)
Mà \(11b⋮11\)
nên \(2a+5b⋮11\) (đpcm)
\(P⋮11\Leftrightarrow\orbr{\begin{cases}2a+5b⋮11\\a+8b⋮11\end{cases}}\)
\(+,2a+5b⋮11\Rightarrow6\left(2a+5b\right)-22b-11a⋮11\Leftrightarrow a+8b⋮11\Rightarrow P⋮121\)
\(+,a+8b⋮11\Rightarrow\frac{a+11a+8b+22b}{6}⋮11\Leftrightarrow2a+5b⋮11\Rightarrow P⋮121\)
ta có điều phải chứng minh
Cách của em đúng rồi đó , nhưng em còn cách này tiện hơn nefk
2n + 11 ⋮ 2n + 1 <=> ( 2n +1 ) + 10 ⋮ 2n + 1 hay 10 ⋮ 2n + 1
=> 2n + 1 thuộc ước của 10 là 1 ; 2 ; 5 ; 10
Mà 2n + 1 lẻ => 2n + 1 = { 1 ; 5 } =>2n = { 0 ; 4 } => n = { 0 ; 2 }
cảm ơn anh đã trả lời em anh hỏi bạn của anh giúp em được không ạ
ta có : (2a+11) chia hết cho (2a+1)
\(\Rightarrow\)(2a+1)+10 chia hết cho (2a+1)
\(\Rightarrow\)10 chia hết cho (2a+1)hay (2a+1)\(\in\)Ư(10)={1;2;5;10}
với 2a+1=1 thì a =0
với 2a+1=2 thì a = 1/2(không thoả mãn)
với 2a+1 = 5 thì a = 2
với 2a+1=10 thì a = 4.5 ( không thoả mãn)
cách của em làm cũng đúng nhung em có thể tham khảo cách mk vừa làm. mk nghĩ cách của mk sẽ nhanh hơn đấy
Bạn muốn chứng minh cái gì nhỉ?