Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Gọi d là ƯCLN(b;a-b)
=> a chia hết cho d
a-b chia hết cho d
=> a-b-a chia hết cho d
hay b chia hết cho d
mà ƯCLN(a;b)=1
=> d=1
Vậy b và a-b là hai số nguyên tố cùng nhau
a, Gọi (b; a -b) là d
=> b chia hết cho d (1)
a - b chia hết cho d
=> a chia hết cho 2 (2)
Từ (1) và (2) => d thuộc ƯC(a; b)
Mà (a; b) = 1
=> 1 chia hết cho d
=> d = 1.
=> (b; a - b) = 1
Vậy b và a - b là 2 số nguyên tố cùng nhau
mk biet cau tra loi rui
bạn giúp mình với