K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

Ta có:

a = (2m - 1)2 = 4m2 - 4m + 1 
b = (2m + 1)2 = 4m2 + 4m + 1 
=> A = (a - 1)(b - 1) = 4m(m -1).4m(m +1) 
Vì m(m -1) và m(m+1) đều chia hết cho 2 => A chia hết cho 4.2.4.2 = 64 
Mà : A chứa m(m-1)(m+1) là tích 3 số nguyên liên tiếp chia hết cho 3 
Vì 3 và 64 nguyên tố cùng nhau => A chia hết cho 64.3 = 192

9 tháng 11 2015

a = (2m - 1)2 = 4m2 - 4m + 1 
b = (2m + 1)^2 = 4m2 + 4m + 1 
=> A = (a - 1)(b - 1) = 4m(m -1).4m(m +1) 
Vì m(m -1) và m(m+1) đều chia hết cho 2 => A chia hết cho 4.2.4.2 = 64 
Mà A chứa m(m-1)(m+1) là tích 3 số nguyên liên tiếp chia hết cho 3 
Mà 3 và 64 nguyên tố cùng nhau => A chia hết cho 64.3 = 192

11 tháng 3 2019

Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo link này nhé!

4 tháng 11 2016

a ) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right).4\)

\(=8\left(n+1\right)\) chia hết cho 8

\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)

b ) \(\left(2n+1\right)^2-1\)

\(=\left(2n+1-1\right)\left(2n+1+1\right)\)

\(=2n.\left(2n+2\right)\)

\(=2.2n\left(n+1\right)\)

\(=4n\left(n+1\right)\)

Ta có : \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)

\(\Rightarrow4n\left(n+1\right)⋮8\).

c ) Gọi 2 số lẻ liên tiếp là \(2n+1\)\(2n-1\)

Ta có : \(\left(2n+1\right)^2-\left(2n-1\right)^2\)

\(=\left(2n+1+2n-1\right)\left(2n+1-2n+1\right)\)

\(=4n.2\)

\(=8n\) chia hết cho 8

Vậy .........

10 tháng 3 2020

Ai giúp mik với, thank you

10 tháng 3 2020

THAM KHẢO LICK NÀY NHA :

https://h.vn/hoi-dap/question/783892.html

19 tháng 9 2020

Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)

\(\Leftrightarrow a^2+b^2+1-2ab+2a-2b=4a\)

\(\Leftrightarrow\left(a-b+1\right)^2=4a\)(*)

Do a,b nguyên nên \(\left(a-b+1\right)^2\)là số chính phương. Suy ra a là số chính phương a=x2 (x nguyên)

Khi đó (*) trở thành : \(\left(x^2-b+1\right)^2=4x^2\Rightarrow x^2-b+1=\pm2x\Leftrightarrow b=\left(x\mp1\right)^2\)

Vậy a và b là hai số chính phương liên tiếp.