Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có CF vuông góc AB tại F (gt)
Nên góc CFB = 90 độ
BE vuông góc AC tại E
Nên góc BEC = 90 độ
Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt
Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .
góc BEC = 90 độ (cmt)
Nên tam giác BEC vuông tại E
Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp đường tròn đường kính OA
tâm là trung điểm của OA
b: Xét (O) có
\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD
\(\widehat{BED}\) là góc nội tiếp chắn cung BD
Do đó: \(\widehat{ABD}=\widehat{BED}\)
mà \(\widehat{BED}=\widehat{DAK}\)(hai góc so le trong, BE//AC)
nên \(\widehat{KAD}=\widehat{KBA}\)
Xét ΔKAD và ΔKBA có
\(\widehat{KAD}=\widehat{KBA}\)
\(\widehat{AKD}\) chung
Do đó: ΔKAD~ΔKBA
=>\(\dfrac{KA}{KB}=\dfrac{KD}{KA}\)
=>\(KA^2=KB\cdot KD\)
Xét (O) có
\(\widehat{KCD}\) là góc tạo bởi tiếp tuyến CK và dây cung CD
\(\widehat{CBD}\) là góc nội tiếp chắn cung CD
Do đó: \(\widehat{KCD}=\widehat{CBD}\)
Xét ΔKCD và ΔKBC có
\(\widehat{KCD}=\widehat{KBC}\)
\(\widehat{CKD}\) chung
Do đó: ΔKCD~ΔKBC
=>\(\dfrac{KC}{KB}=\dfrac{KD}{KC}\)
=>\(KC^2=KB\cdot KD\)
=>KC=KA
=>K là trung điểm của AC