Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n^2+2n-4=n^2+2n-15+11=\left(n^2+5n-3n-15\right)+11=\left(n-3\right)\left(n+5\right)+11\)
để \(n^2+2n-4\) chia hết cho 11 <=> (n - 3).(n +5) chia hết cho 11 <=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)
n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)
n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)
vậy với n = 11k + 3 hoặc n = 11k' - 5 thì \(n^2+2n-4⋮11\)
b.
\(n^3-2=\left(n^3-8\right)+6=\left(n-3\right)\left(n^2+2n+4\right)+6\)
để \(n^3-2⋮n-2\) <=> 6 chia hết cho n-2 <=> n - 2 ∈ Ư(6) = {-6;-3;-2;-1;1;2;3;6}
Tương ứng n ∈ {-4; -1; 0; 1; 3; 4; 5; 8}
Vậy...
Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do 5n(n-1)(n+1) có dạng 5k. Do đó chia hết cho 5.
Lại có: n ; n-1 ; n+1 là 3 số tự nhiên liên tiếp nên tích chúng sẽ tồn tại thưa số chia hết cho 3, chia hết cho 2.
Do đó5n(n-1)(n+1) \(⋮30\)
Mặt khác: n(n-1)(n+1)(n-2(n+2) là tích 5 số tự nhiên liên tiêp, do đó tích của chúng có tồn tại 1 thừa số chi hết cho, 5, một thwuaf số chia hết cho 3, một thưa só chia hét cho 2.
Do đó n5-n chia hết cho 30
\(A=n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Đặt n = 2k+1 Thay vào A có: \(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
=> \(A⋮16\)
Lại có k;k-1;k=1;k=2 là 3 số nguyên liên tiếp do đó tích chung số chia hét cho 2,3,4(3 số nguyên tố cùng nhau). Nên A chia hết 24
=> A\(A⋮384\)
Ta có : \(2n^2-n+2=n\left(2n+1\right)-\left(2n+1\right)+3⋮2n+1\)
\(\Rightarrow3⋮2n+1\Rightarrow2n+1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Rightarrow n\in\left\{-2,-1,0,1\right\}\)
Vậy : \(n\in\left\{-2,-1,0,1\right\}\)
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)
b: \(\Leftrightarrow n^3-8+6⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
c: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha
2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)
\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)
\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)
\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)
\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)
Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản
\(C=\dfrac{A}{B}=\dfrac{n^3+2n^2-3n+2}{n^2-n}=\dfrac{\left(n^3-n^2\right)+3n^2-3n+2}{n^2-n}=\dfrac{n\left(n^2-n\right)+3\left(n^2-n\right)+2}{n^2-n}\)\(C=n+3+\dfrac{2}{n^2-n}\)
\(n,C\in Z\Rightarrow\dfrac{2}{n^2-n}\in Z\Rightarrow n^2-n=\left\{-2;-1;1;2\right\}\)
n^2 -n là hai số chẵn
\(\left[{}\begin{matrix}n^2-n=-2\\n^2-n=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}n^2-n=-2\left(vn\right)\\n^2-n=2\left[{}\begin{matrix}n_1=-1\\n_2=2\end{matrix}\right.\end{matrix}\right.\)