Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(n\inℤ\Rightarrow\hept{\begin{cases}6n+42\inℤ\\6n\inℤ\end{cases};\left(6n\ne0\right)}\)
mà \(A\inℤ\Leftrightarrow6n+42⋮6n\)
Vì \(6n⋮6n\)
\(\Rightarrow42⋮6n\)
\(\Rightarrow7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)\)
\(\Rightarrow n\in\left\{1;-1;7;-7\right\}\text{thì }A\inℤ\)
Để A là số nguyên thì 42 phải chia hết cho 6n và n thuộc Z
suy ra : 6n thuộc Ư (42) = { 1,2,3,6,7,14,21,42,-1,-2,-3,-6,-7,-14,-21,-42}
suy ra : n thuộc { 1,-1,7,-7 }
Vậy n thuộc 1,-1,7,-7
Lời giải:
Kẻ \(SH\perp BA\)
Vì \((SAB)\perp (ABCD); (SAB)\cap (ABCD)=BA\) nên \(SH\perp (ABCD)\)
Từ dữ kiện đề bài:
\(S_{ABCD}=AC.BD=a\sqrt{3}.a=\sqrt{3}a^2\)
Gọi \(O=AC\cap BD\). Theo tính chất hình thoi:
\(AO=\frac{AC}{2}=\frac{\sqrt{3}a}{2}; BO=\frac{BD}{2}=\frac{a}{2}\)
\(\rightarrow AB=\sqrt{AO^2+BO^2}=a\)
Vì $SAB$ vuông cân tại $S$ nên \(SB=SA=\frac{AB}{\sqrt{2}}=\frac{a}{\sqrt{2}}\)
\(S_{SAB}=\frac{SA.SB}{2}=\frac{SH.AB}{2}\rightarrow SH=\frac{SA.SB}{AB}=\frac{\frac{a}{\sqrt{2}}.\frac{a}{\sqrt{2}}}{a}=\frac{a}{2}\)
Vậy:
\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a}{2}.\sqrt{3}a^2=\frac{\sqrt{3}a^3}{6}\)