Cho a ∈ N, chứng tỏ rằng a^2+ a + 2021 không là bội của 5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2021

\(a^2+a+2021=a\left(a+1\right)+2021\)

a và (a+1) là hai số TN liên tiếp => tích a(a+1) có chữ số tận cùng = {0;2;6}

=> a(a+1)+2021 có chữ số tận cùng = {1;3;7}\(\Rightarrow a^2+a+2021\) không chia hết cho 5 nên nó không phải bội của 5

1 tháng 1 2022

a thuộc N nên a có dạng 5k,5k+1,5k+2,5k+3,5k+4

với a=5k thì a^2 và a chia hết cho 5 mà 2021 ko chia hết nên tổng ko chia hết

với a=5k+1 =>a2+a+2021=(5k+1)2+5k+1+2021=25k2+15k+2023 không chia hết cho 5

bạn làm tương tự với mấy cây còn lại, ko đc thì nói nhé

chúc bạn học tốt

NNBC-1/1/2022

28 tháng 12 2021

=1811.39267016hoac 1811du75 
chuc ban hoc tot

nho k cho mk nho

28 tháng 12 2021

số chia hết cho 5 có tận cùng là 5 hoặc 0 
 mà trong tổng có 1 thừa số là 2021 có tận cùng là 1 nên cả tổng sẽ không chia hết cho 5

12 tháng 8 2018

a)  \(\overline{aaaaaa}=a.111111=a.3.37037\) \(⋮\)\(37037\)

b)  Nhận thấy các hạng tử trong B  đều chia hết cho 3   =>  B chia hết cho 3

\(B=3+3^3+3^5+3^7+...+3^{2017}+3^{2019}+3^{2021}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+....+\left(3^{2017}+3^{2019}+3^{2021}\right)\)

\(=3\left(1+3^2+3^4\right)+3^7\left(1+3^2+3^4\right)+...+3^{2017}\left(1+3^2+3^4\right)\)

\(=\left(1+3^2+3^4\right)\left(3+3^7+...+3^{2017}\right)\)

\(=91\left(3+3^7+....+3^{2017}\right)\)\(⋮\)\(91\)

mà  (3;91) = 1

=>  B chia hết cho 273

12 tháng 8 2018

B chia hết cho 273

Còn câu a thì mình không biết nhé, xin lỗi bạn.

30 tháng 12 2021

bài này hôm nọ mk chx lm đc.

Thông cảm T _ T

14 tháng 2 2019

Phần a có 2 cách nha bạn:

-C1:Ta thấy tổng các chữ số của ababab là :a+b+a+b+a+b =3a+3b=3x(a+b) chia hết cho 3

Vậy ababab chia hết cho 3

-C2:ta có :ababab=a x100000+b x10000+a x1000+b x100+a x10+b

                             =a x101010+b x10101

                             =3x(a x33670+b x3367) chia hết cho 3

Vậy ababab chia hết cho 3

23 tháng 7 2015

làm 1 bài thôi có được không.

12 tháng 10 2015

#ha le ha ban trả lời câu 2,3,4 giúp minh với

NM
13 tháng 10 2021

ta có a+2021 và a+2020 là hai số tự nhiên liên tiếp

nên chắc chắc có 1 số chẵn trong hai số đó

vậy tích (a+2021)(a+2020) là số chẵn, hay là bội của 2