Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Bài 1
Vì 6x+11y chia hết cho 31
=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)
Bài 3
n 2 + 3n - 13 chia hết cho n + 3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 thuộc Ư(13)={-1;1;-13;13}
=>n thuộc{-4;-2;-16;10}
n 2 + 3 chia hết cho n - 1
ta có: n-1 chia hết cho n-1
=>(n-1)(n+1) chia hết cho n-1
=>n^2+n-n-1 chia hết cho n-1
=>n^2-1 chia hết cho n-1 mà n2 + 3 chia hết cho n - 1
=>(n^2+3)-(n^2-1) chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 thuộc Ư(4)={-1;1;-2;2;-4;4}
=> n thuộc {0;2;-1;3;-3
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
a)
Đặt tích 3 số tự nhiên liên tiếp là T = a. (a + 1). (a + 2)
- Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+ Nếu a chia hết cho 2 (a chẵn)
=> T chia hết cho 2.
+ Nếu a chia 2 dư 1 (a lẻ)
=> a + 1 chia hết cho 2
=> T chia hết cho 2.
- Chứng minh T chia hết cho 3: Có 3 trường hợp
+ Nếu a chia hết cho 3
=> T chia hết cho 3.
+ Nếu a chia 3 dư 1
=> a + 2 chia hết cho 3
=> T chia hết cho 3.
+ Nếu a chia 3 dư 2
=> a + 1 chia hết cho 3
=> T chia hết cho 3.
Mà 2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6 (đpcm).
Vậy tích của 3 số tự nhiên liên tiếp thì chia hết cho 6.
Chúc bạn học tốt!
a) Gọi n, n+1, n+2 là 3 số tự nhiên liên tiếp
Ta có A=n*(n+1)*(n+2)
- Chứng minh A chia hết cho 2:
+ Nếu n chẵn => n chia hết cho 2 => A chia hết cho 2
+ Nếu n lẻ => n+1 chia hết cho 2 => A chia hết cho 2
- Chứng minh A chia hết cho 3:
+ Nếu n chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 1=> n+2 chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => A chia hết cho 3
Mà (2,3) =1
=> A chia hết cho 2*3 = 6 ( thỏa mãn )
Vậy tích 3 số tự nhiên liên tiếp chia hết cho 6
Chúc bạn học có hiệu quả!