Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2
=>m<=1 hoặc m>=-1
b: Để A là tập con của B thì m-1>-2 và 4<=2m+2
=>m>-1 và 2m+2>=4
=>m>-1 và m>=1
=>m>=1
c: Để B là tập con của B thì m-1<-2 và 2m+2<=4
=>m<-1 và m<=1
=>m<-1
Câu 1:
Bạn vẽ trục số 1 cái trên 1 cái dưới cho dễ tưởng tượng
Khi đó, để \(A\cap B=\oslash\) thì có 2 khả năng xảy ra:
\(n\leq -5\) hoặc \(n-2>9\Leftrightarrow n> 11\)
Vậy $n\leq -5$ hoặc $n> 11$
Ngược lại. Để \(A\cap B\neq \oslash\) thì \(n> -5\) hoặc $n< 11$
Câu 2:
Tương tự câu 1: Để \(M\cap N\neq \oslash \Rightarrow m+1\leq 1\) hoặc \(m\geq 3\)
Hay \(m\leq 0\) hoặc $m\geq 3$
Câu 3:
Để \(A\cap B\neq \oslash \) thì \(x+2\leq 2\) hoặc $x\geq 5$
hay \(x\leq 0\) hoặc $x\leq 5$
Ta có \(A\cap B=\varnothing khi\left[{}\begin{matrix}a+2< b\\b+1< a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a< b-2\\a>b+1\end{matrix}\right.\)
\(\Rightarrow A\cap B\ne\varnothing\) khi \(a\in\left[b-2;b+1\right]\)
A∩B ≠ ∅ \(\Leftrightarrow\left[{}\begin{matrix}a+2\ge b\\b+1\ge a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge b-2\\b\ge a-1\end{matrix}\right.\)
Lời giải:
(Vẽ trục số để dễ tưởng tượng nhé)
Để \(A\cap B=\oslash\) thì có thể xảy ra 2 TH sau:
TH1: \(m+1\leq -1\Leftrightarrow m\leq -2\) . Khi đó khoảng biểu diễn của A nằm bên trái B và không trùng điểm nào với đoạn biểu diễn B
TH2: \(m\geq 3\) . Khi đó khoảng biểu diễn của A nằm bên phải B và không trùng điểm nào với đoạn biểu diễn B
Câu a nếu là giao thì có 2 TH thỏa mãn:
\(\left[{}\begin{matrix}m+2< n\\n+3\le m\end{matrix}\right.\)
a/ Đề sai, A hợp B không thể bằng rỗng (vì cả 2 tập hợp đều ko phải tập rỗng nên hợp của chúng ko thể rỗng)
Bạn coi lại đề yêu cầu giao hay hợp
b/ A giao B có 1 phần tử duy nhất khi và chỉ khi \(m+2=n\)
a,\(A\cap B=\varnothing\)
Có:\(A\cap B=\left[{}\begin{matrix}\left(a;b\right)\\\left(b;a\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}a< b\\b< a\end{matrix}\right.\)
Mà b<a thì A\(\cap B\ne\varnothing\)
Vậy a<b thì ta có đpcm.
b,\(A\cup B=R\)
\(\Rightarrow\left(-\infty;+\infty\right)=R\)=>\(a,b\in R\)
c,R\A=B.
*TH1:a<b.
=>R\A=[a;\(+\infty\))=>a>b.
*TH2:b<a:
=>R\A=\(\varnothing\)
Vậy ko tồn tại a,b.
d,\(\left(R\A\right)\cap\left(R\B\right)\ne\varnothing\)
\(\Rightarrow\)[a;\(+\infty\))\(\cap\)(\(-\infty\);b]\(\ne\varnothing\)
*TH1: a=b=>a=b TM.
*TH2:a<b:
\(\Rightarrow\left[a;b\right]\ne\varnothing\left(Đ\right)\)
*TH3: a>b:
\(\Rightarrow\left[b;a\right]\ne\varnothing\left(Đ\right)\)
Vậy a,b thuộc R.
#Walker
Bạn cần ghi đề 1 cách tử tế và chính xác để người khác còn biết chứ bạn :)
Kí kiệu 2 tập A và B thế kia thì làm sao biết đó là khoảng hay đoạn hay nửa khoảng, nửa đoạn, hay là dạng tập liệt kê... :)
Bài 2:
|x-m|<=1
=>-1<=x-m<=1
=>m-1<=x<=m+1
Để X là tập con của (-5;1] thì m-1>-5 và m+1<=1
=>-4<m<=0
Để \(A\cap B=\varnothing\)
\(\Rightarrow\left[{}\begin{matrix}m+2< n\\n+1< m\end{matrix}\right.\)
Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh HằngHồng Phúc NguyễnMysterious PersonVõ Đông Anh TuấnPhương AnTrần Việt Linh