Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 = (m2 + n2)2 = m4 + 2m2.n2 + n4
b2 = (m2 - n2)2 = m4 - 2m2.n2 + n4
c2 = (2mn)2 = 4m2.n2
Nhận xét: a2 - b2 = c2 => a2 = b2 + c2
Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông
a ^2 = (m^2 + n^ 2 ) ^2 = m^4 + 2m^2 .n^ 2 + n^ 4
b^ 2 = (m^2 - n ^2 ) 2 = m^4 - 2m^2 .n ^2 + n^ 4
c ^2 = (2mn) ^2 = 4m^2 .n ^2
Nhận xét: a^ 2 - b ^2 = c^ 2 => a ^2 = b ^2 + c^ 2
Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông
\(a^2="m^2+n^2"^2=m^4+2m^2.n^2+n^4\)
\(b^2="m^2-n^2"^2=m^4-2m^2.n^2+n^4\)
\(c^2="2mn"^2=4m^2.n^2\)
Nhận xét: \(a^2-b^2=c^2\Rightarrow a^2=b^2+c^2\)
Theo Định Lý Py-ta-go đảo a;b;c là độ dài 3 cạnh của 1 tam giác vuông
P/s: Bn bấm và dòng chữ màu xanh để rìm hiểu vì Định lý Py-ta-go thuận và đảo nhé
Lý thuyết. Định lí Pytago - loigiaihay.com
Thay dấu ngoặc kép thành ngoặc đơn nha
Tuyển tập Bất đẳng thức Trần Sĩ Tùng 4 III. Chứng minh BĐT dựa vào BĐT Bunhiacôpxki 1. Chứng minh: (ab + cd)2 £ (a2 + c2)(b2 + d2) BĐT Bunhiacopxki 2. Chứng minh: + £sinx cosx 2 3. Cho 3a – 4b = 7. Chứng minh: 3a2 + 4b2 ³ 7. 4. Cho 2a – 3b = 7. Chứng minh: 3a2 + 5b2 ³ 72547. 5. Cho 3a – 5b = 8. Chứng minh: 7a2 + 11b2 ³ 2464137. 6. Cho a + b = 2. Chứng minh: a4 + b4 ³ 2. 7. Cho a + b ³ 1 Chứng minh: + ³2 2 1a b2 Lời giải: I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1. Cho a, b > 0 chứng minh: + +æ ö³ ç ÷è ø33 3a b a b2 2 (*) (*) Û + +æ ö- ³ç ÷è ø33 3a b a b02 2 Û ( )( )+ - ³23a b a b 08. ĐPCM. 2. Chứng minh: + +£ 2 2a b a b2 2 («) ÷ a + b £ 0 , («) luôn đúng. ÷ a + b > 0 , («) Û + + +- £2 2 2 2a b 2ab a b04 2 Û ( )- ³2a b04 , đúng. Vậy: + +£ 2 2a b a b2 2. 3. Cho a + b ³ 0 chứng minh: + +³ 3 33a b a b2 2 Û ( )+ +£3 3 3a b a b8 2 Û ( )( )- - £2 23 b a a b 0 Û ( ) ( )- - + £23 b a a b 0, ĐPCM. 4. Cho a, b > 0 . Chứng minh: + ³ +a ba bb a («) («) Û + ³ +a a b b a b b a Û ( ) ( )- - - ³a b a a b b 0 Û ( )( )- - ³a b a b 0 Û ( ) ( )- + ³2a b a b 0, ĐPCM. 5. Chứng minh: Với a ³ b ³ 1: + ³++ +2 21 1 21 ab1 a 1 b («) Trần Sĩ Tùng Tuyển tập Bất đẳng thức 1 PHẦN I: LUYỆN TẬP CĂN BẢN I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1. Cho a, b > 0 chứng minh: + +æ ö³ ç ÷è ø33 3a b a b2 2 2. Chứng minh: + +£ 2 2a b a b2 2 3. Cho a + b ³ 0 chứng minh: + +³ 3 33a b a b2 2 4. Cho a, b > 0 . Chứng minh: + ³ +a ba bb a 5. Chứng minh: Với a ³ b ³ 1: + ³++ +2 21 1 21 ab1 a 1 b 6. Chứng minh: ( )+ + + ³ + +2 2 2a b c 3 2 a b c ; a , b , c Î R 7. Chứng minh: ( )+ + + + ³ + + +2 2 2 2 2a b c d e a b c d e 8. Chứng minh: + + ³ + +2 2 2x y z xy yz zx 9. a. Chứng minh: + + + +³ ³a b c ab bc ca; a,b,c 03 3 b. Chứng minh: + + + +æ ö³ ç ÷è ø22 2 2a b c a b c3 3 10. Chứng minh: + + ³ - +22 2ab c ab ac 2bc4 11. Chứng minh: + + ³ + +2 2a b 1 ab a b 12. Chứng minh: + + ³ - +2 2 2x y z 2xy 2xz 2yz 13. Chứng minh: + + + ³ - + +4 4 2 2x y z 1 2xy(xy x z 1) 14. Chứng minh: Nếu a + b ³ 1 thì: + ³3 3 1a b4 15. Cho a, b, c là số đo độ dài 3 cạnh của 1 tam giác. Chứng minh: a. ab + bc + ca £ a2 + b2 + c2 < 2(ab + bc + ca). b. abc ³ (a + b – c)(a + c – b)(b + c – a) c. 2a2b2 + 2b2c2 + 2c2a2 – a4 – b4 – c4 > 0
a−b<c<=>a2+b2−2ab<c2a−b<c<=>a2+b2−2ab<c2
b−c<a<=>b2+c2−2bc<a2b−c<a<=>b2+c2−2bc<a2
a−c<b<=>a2+c2−2ac<b2
chuyển qua là được
Ta có :
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a^2+b^2-2ab\right)\right]\left[\left(a^2+b^2+2ab\right)-c^2\right]\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\left(a+b+c\right)\)
Áp dụng bất đẳng thức tam giác thì ta có :
\(b+c-a>0\)
\(a+c-b>0\)
\(a+b-c>0\)
Hiển nhiên \(a+b+c>0\)
\(A\)là tích của 4 số dương nên \(A>0.\)
Vậy \(A>0.\)
=(2ab−a2−b2+c2)(2ab+a2+b2−c2)
=[c2−(a2+b2−2ab)][(a2+b2+2ab)−c2]
=[c2−(a−b)2][(a+b)2−c2]
=(b+c−a)(a+c−b)(a+b−c)(a+b+c)
Áp dụng bất đẳng thức tam giác thì ta có :
b+c−a>0
a+c−b>0
a+b−c>0 a+b+c>0
A A là tích của 4 số dương nên A>0.
Vậy A>0.
\(a^2=(m^2+n^2)^2=m^4+2m^2.n^2+n^4\)
\(b^2=\left(m^2-n^2\right)^2=m^4-2m^2.n^2+n^4\)
\(c^2=(2mn)^2=4mn^2.n^2\)
Nx: \(a^2-b^2=c^2\)
\(\Rightarrow a^2=b^2+c^2\)
Theo định lí Py-ta-go đảo thì:
\(a;b;c\) là đọ dài 3 cạnh của 1 tam giác vuông.