K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2023

Ta có:

\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{10}-1\right)\)

\(A=-\dfrac{1}{2}\cdot-\dfrac{2}{3}-\dfrac{3}{4}\cdot...\cdot-\dfrac{9}{10}\)

\(A=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-9}{2\cdot3\cdot4\cdot...\cdot10}\)

\(A=-\dfrac{1}{10}\)

Mà: \(10>9\)

\(\Rightarrow\dfrac{1}{10}< \dfrac{1}{9}\)

\(\Rightarrow-\dfrac{1}{10}>-\dfrac{1}{9}\)

\(\Rightarrow A>-\dfrac{1}{9}\)

31 tháng 12 2023

a: \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\)

\(=-\dfrac{1}{10}\)

9<10

=>1/9>1/10

=>\(-\dfrac{1}{9}< -\dfrac{1}{10}\)

=>\(A>-\dfrac{1}{9}\)

b: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)

\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)

20<21

=>\(\dfrac{11}{20}>\dfrac{11}{21}\)

=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)

=>\(B< -\dfrac{11}{21}\)

2 tháng 10 2017

bai 1

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right).....\left(\dfrac{1}{10}-1\right)\)

\(A=\left(\dfrac{1-2}{2}\right)\left(\dfrac{1-3}{3}\right).....\left(\dfrac{1-9}{10}\right)\)

\(A=-\left(\dfrac{1.2.3.....8.9}{2.3....9.10}\right)=-\dfrac{1}{10}>-\dfrac{1}{9}\)

20 tháng 8 2023

\(A=\left(\dfrac{1}{4}-1\right).\left(\dfrac{1}{9}-1\right)....\left(\dfrac{1}{100}-1\right).\)

\(\Rightarrow A=\left(-\dfrac{3}{4}\right).\left(-\dfrac{8}{9}\right)....\left(-\dfrac{99}{100}\right)\)

mà A có 9 dấu - \(\left(4;9;16;25;36;49;64;81;100\right)\)

\(\Rightarrow0>A=\left(-\dfrac{3}{4}\right).\left(-\dfrac{8}{9}\right)....\left(-\dfrac{99}{100}\right)=-\dfrac{1}{2}\)

Ta lại có \(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{21}{42}\\\dfrac{11}{21}=\dfrac{22}{42}\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{2}< \dfrac{11}{21}\Rightarrow-\dfrac{1}{2}>-\dfrac{11}{21}\)

\(\Rightarrow A>-\dfrac{11}{21}\)

20 tháng 8 2023

\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)...\left(\dfrac{1}{100}-1\right)\)

\(A=\left(-\dfrac{2^2-1}{2^2}\right)\left(-\dfrac{3^2-1}{3^2}\right)...\left(-\dfrac{10^2-1}{10^2}\right)\)

\(A=\left[-\dfrac{1\cdot3}{2\cdot2}\right]\left[-\dfrac{2\cdot4}{3\cdot3}\right]...\left[-\dfrac{9\cdot11}{10\cdot10}\right]\)

Dễ thấy A có 9 thừa số, suy ra

\(A=-\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot9\cdot11}{2\cdot2\cdot3\cdot3\cdot...\cdot10.10}=-\dfrac{1\cdot11}{2\cdot10}=\dfrac{-11}{20}\)

Vì 20 < 21 nên \(\dfrac{11}{20}>\dfrac{11}{21}\), suy ra \(\dfrac{-11}{20}< \dfrac{-11}{21}\)

Vậy \(A< \dfrac{-11}{21}\)

1 tháng 1 2018

\(A=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{10}-1\right)\)

\(=\left(\dfrac{1}{2}-\dfrac{2}{2}\right).\left(\dfrac{1}{3}-\dfrac{3}{3}\right)...\left(\dfrac{1}{10}-\dfrac{10}{10}\right)\)

\(=\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}...\dfrac{-9}{10}\)

\(=\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-9\right)}{2.3.4...8.9.10}\)

\(=\dfrac{-1}{10}>\dfrac{-1}{9}\)

\(\Rightarrow A>-\dfrac{1}{9}\)

1 tháng 1 2018

Nguyễn Đang Huy người ta ngu còn hơn cái loại bảo người ta ngu

23 tháng 9 2021

\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{81}\right)\left(1-\dfrac{1}{100}\right)\)

\(=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{99}{100}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{9.11}{10.10}=\left(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{9}{10}\right).\left(\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{11}{10}\right)=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)

23 tháng 9 2021

\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{9}\right)\left(1+\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\\ B=\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{8}{9}\cdot\dfrac{9}{10}\right)\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{10}{9}\cdot\dfrac{11}{10}\right)\\ B=\dfrac{1}{10}\cdot\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)

20 tháng 9 2023

\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)

\(B=\left(\dfrac{2^2}{2^2}-\dfrac{1}{2^2}\right)\cdot\left(\dfrac{3^2}{3^2}-\dfrac{1}{3^2}\right)....\left(\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\right)\)

\(B=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}....\cdot\dfrac{100^2-1}{100^2}\)

\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot...\cdot\dfrac{\left(100+1\right)\left(100-1\right)}{100^2}\)

\(B=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}\)

\(B=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot101}{2^2\cdot3^2\cdot4^2\cdot5^2\cdot....\cdot100^2}\)

\(B=\dfrac{1\cdot101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)

\(B=\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)

Mà: \(\dfrac{1}{2}=\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\) 

Ta có: \(101< 3\cdot4\cdot5\cdot...\cdot100\)

\(\Rightarrow\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}< \dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)

\(\Rightarrow B< \dfrac{1}{2}\)     

19 tháng 9 2023

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right)\)

\(B=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)....\left(\dfrac{1}{2020^2}-\dfrac{2020^2}{2020^2}\right)\)

\(B=\left(\dfrac{1-2^2}{2^2}\right)\left(\dfrac{1-3^2}{3^2}\right)...\left(\dfrac{1-2020^2}{2020^2}\right)\)

\(B=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}\cdot\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}....\cdot\dfrac{\left(2020-1\right)\left(2020+1\right)}{2020^2}\) 

\(B=\dfrac{-1\cdot3}{2^2}\cdot\dfrac{-2\cdot4}{3^2}\cdot\dfrac{-3\cdot5}{4^2}\cdot....\cdot\dfrac{-2019\cdot2021}{2020}\)

\(B=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-2019}{2\cdot3\cdot4\cdot....\cdot2020}\)

\(B=\dfrac{-1\cdot-1\cdot-1\cdot....\cdot-1}{1}\)

\(B=-1\) (2019 số -1) 

Mà: \(-1< \dfrac{1}{2}\)

\(\Rightarrow B< \dfrac{1}{2}\)

19 tháng 9 2023

 \(\dfrac{1}{2^2}\)\(\dfrac{1}{3^2}\);...;\(\dfrac{1}{2020^2}\) < 1 ⇒ 0 > \(\dfrac{1}{2^2}\) - 1 > \(\dfrac{1}{3^2}\) - 1 >..> \(\dfrac{1}{2020^2}\) - 1

Xét dãy số 2; 3; 4;...; 2020 dãy số này có số số hạng là:

        (2020 - 2):1 + 1 = 2019 (số hạng)

Vậy B là tích của 2019 số âm nên B < 0 ⇒ B < \(\dfrac{1}{2}\)

 

 

 

 

 

23 tháng 9 2021

\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{19}\right)\left(1-\dfrac{1}{20}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{18}{19}.\dfrac{19}{20}=\dfrac{1}{20}>\dfrac{1}{21}\)

21 tháng 7 2018

\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)...\left(\dfrac{1}{400}-1\right)\)

\(=\left(\dfrac{-3}{4}\right)\left(\dfrac{-8}{9}\right)\left(\dfrac{-15}{16}\right)...\left(\dfrac{-399}{400}\right)\)

\(=\dfrac{-3.8.15...399}{4.9.16...400}\)

\(=\dfrac{-3.2.4.3.5...21.19}{2^2.3^2.4^2...20^2}\)

\(=\dfrac{-2.3.4...19}{2.3.4...20}.\dfrac{3.4.5...21}{2.3.4...20}\)

\(=\dfrac{-1}{20}.\dfrac{21}{2}\)

\(=\dfrac{-21}{40}< \dfrac{-1}{2}\)

Vậy \(A< \dfrac{-1}{2}\)