K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2019

gửi nhanh cho mình nhá. Làm đầy đủ hết

25 tháng 12 2019

Bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/20187858867.html

16 tháng 11 2016

Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.

DD
28 tháng 9 2021

a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ. 

\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)

(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))

\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).

Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).

Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).

b) Đặt \(\left(2n+1,3n+1\right)=d\).

Suy ra 

\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

7 tháng 2 2021

ko phải violympic toán đâu mà chỉ HSG thôi

28 tháng 10 2016

Vì a; a + k; a + 2k là ba số nguyên tố lớn hơn 3 nên chúng là số lẻ. Vậy thì a + a + k = 2a + k là số chẵn. Từ đó suy ra k chia hết cho 2.

 Do a nguyên tố lớn hơn 3 nên a = 3m  + 1 hoặc a = 3m  + 2 (m nguyên).

Với a = 3m + 1:

+ Nếu k = 3p + 2 thì a + k = 3m + 1 + 3p + 2 chia hết 3 (Vô lý vì a + k nguyên tố lớn hơn 3).

+ Nếu k = 3p + 1 thì a + 2k = 3m + 1 + 6p + 2 chia hết 3 (Vô lý vì a + 2k nguyên tố lớn hơn 3).

Vậy k = 3p hay k chia hết cho 3.

Với a = 3m + 2:

+ Nếu k = 3p + 2 thì a + 2k = 3m + 2 + 6p + 6 chia hết 3 (Vô lý vì a + 2k nguyên tố lớn hơn 3).

+ Nếu k = 3p + 1 thì a + k = 3m + 2 + 3p + 1 chia hết 3 (Vô lý vì a + k nguyên tố lớn hơn 3).

Vậy k = 3p hay k chia hết cho 3.

Tóm lại k chia hết 2 và k chia hết 3, mà (2; 3) = 1 nên k chia hết cho 6.

11 tháng 11 2017

Số nguyên tố lớn hơn có dạng 3k+1 và 3k+2 

Xét p có dạng 3k+1

=> ( p - 1 ) ( p + 4 ) = ( 3k+1 - 1 ) ( 3k+1 + 4 )

      =  3k( 3k+5 ) 

Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ 

=> 3k+5 là số chẵn 

=> 3k( 3k + 5 ) chia hết cho cả 3 và 2

=> 3k( 3k + 5 ) chia hết cho 6 kéo theo ( p-1 ) ( p+4) chia hết cho 6

Xét p có dạng 3k+2

=> ( p - 1 ) ( p + 4 ) = ( 3k + 2 - 1 ) ( 3k + 2 + 4 )

      = ( 3k+1 ) ( 3k + 6 ) 

      = ( 3k + 1 ) [ 3( k + 2 ) ]

Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ

=> 3k+1 là số chẵn 

=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 2 và 3 

=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 6 kéo theo ( p - 1 ) ( p + 4 ) chia hết cho 6

Vậy với mọi p ta có ( p - 1 ) ( p + 4 ) chia hết cho 6 )

P/s : đây là dạng toán chứng minh đơn giản nhất của khối 6 

19 tháng 11 2017

Số nguyên tố lớn hơn có dạng 3k+1 và 3k+2 

Xét p có dạng 3k+1: ta có

=> ( p - 1 ) ( p + 4 ) = ( 3k+1 - 1 ) ( 3k+1 + 4 )

      =  3k( 3k+5 ) 

Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ 

=> 3k+5 là số chẵn 

=> 3k( 3k + 5 ) chia hết cho cả 3 và 2

=> 3k( 3k + 5 ) chia hết cho 6 kéo theo ( p-1 ) ( p+4) chia hết cho 6

Xét p có dạng 3k+2

=> ( p - 1 ) ( p + 4 ) = ( 3k + 2 - 1 ) ( 3k + 2 + 4 )

      = ( 3k+1 ) ( 3k + 6 ) 

      = ( 3k + 1 ) [ 3( k + 2 ) ]

Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ

=> 3k+1 là số chẵn 

=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 2 và 3 

=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 6 kéo theo ( p - 1 ) ( p + 4 ) chia hết cho 6

Vậy với mọi p ta có ( p - 1 ) ( p + 4 ) chia hết cho 6

12 tháng 6 2015

a)2x+y=7(2x+y)=14x+7y

Do 2x+9 chia hết cho 9 =>14x+7y chia hết cho 9

9x chia hết cho 9 =>14x+7y-9x=5x+7y chia hết cho 9

b)p và p+2 là số nguyên tố lớn hơn 3 nên p+p+2=2p+2 chia hết cho 2

p là số nguyên tố lớn hơn 3 nên

*)P=3k(loại vì 3k là hợp số  có ước là 3 và k)

*)p=3k+1(loại vì số nguyên tố lớn hơn 3 là số lẻ =>3k+1 là số chẵn)

*)p=3k+2(TM)

=>2p+2=6k+4+2=6k+6 chia hết cho 3

2p+2 chia hết cho 2 và 3=>2p+2 chia hết cho 6

=>(2p+2).1/2=p+1 chia hết cho 6

22 tháng 2 2018

^.^

^-^

^_^