Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
a : 7 dư 3 cm a2 : 7 dư 2
Ta có: a = 7k + 3
⇔ a2 = (7k + 3)2
⇔ a2 = 49k2 + 42k + 9
⇔ a2 = 7.(7k2 + 6k + 1) + 2
7 ⋮ 7 ⇔ 7.(7k2 + 6k + 1) ⋮ 7
⇔ a2 = 7.(7k2 + 6k + 1) + 2 : 7 dư 2 (đpcm)
Cách 2 sử dụng đồng dư thức:
a \(\equiv\) 3 (mod 7) ⇔ a2 \(\equiv\) 32 (mod 7) 32 : 7 dư 2 ⇔ a2 : 7 dư 2 (đpcm)
a, Gọi b là số thương của phép chia a cho 3 dư 2 => a=3b+2
\(a^2=\left(3b+2\right)^2=9b^2+12b+4=3\left(3b^2+4b+1\right)+1\\ Mà:3\left(3b^2+4b+1\right)⋮3\\ Vậy:3\left(b^2+4b+1\right)+1:3\left(dư.1\right)\\ Vậy:a^2:3\left(dư.1\right)\left(đpcm\right)\)
b, Gọi c là số thương của phép chia cho 5 dư 3 => a=5b+3
\(a^2=\left(5b+3\right)^2=25b^2+30b+9=5\left(5b^2+6b+1\right)+4\\ Mà:5\left(5b^2+6b+1\right)⋮5\\ Nên:5\left(5b^2+6b+1\right)+4:5\left(dư.4\right)\\ Vậy:a^2:5\left(dư.4\right)\left(đpcm\right)\)
a) Số a có dạng: \(a=3k+2\)
\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k\right)^2+2\cdot3k\cdot2+2^2=9k^2+12k+4\)
\(\Rightarrow a^2=9k^2+12k+3+1=3\left(3k^2+4k+1\right)+1\)
Mà: \(3\left(3k^2+4k+1\right)\) ⋮ 3
\(\Rightarrow a^2=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1
b) Số a có dạng là: \(a=5k+3\)
\(\Rightarrow a^2=\left(5k+3\right)^2=25k^2+2\cdot5k\cdot3+3^2=25k^2+30k+9\)
\(\Rightarrow a^2=\left(25k^2+30k+5\right)+4=5\left(5k^2+6k+1\right)+4\)
Mà: \(5\left(5k^2+6k+1\right)\) ⋮ 5
\(\Rightarrow a^2=5\left(5k^2+6k+1\right)+4\) chia 5 dư 4
a chia 3 dư 1 nên a=3k+1
b chia 3 dư 2 nên b=3e+2
a*b=(3k+1)(3e+2)
=9ke+6k+3e+2
=3(3k2+2k+e)+2 chia 3 dư 2
Ta có: a chia cho 3 dư 1 ⇒ a = 3q + 1 (q ∈N)
b chia cho 3 dư 2 ⇒ b = 3k + 2 (k ∈N)
a.b = (3q +1)(3k + 2) = 9qk + 6q + 3k +2
Vì 9 ⋮ 3 nên 9qk ⋮ 3
Vì 6 ⋮ 3 nên 6q ⋮ 3
Vì 3⋮ 3 nên 3k ⋮ 3
Vậy a.b = 9qk + 6q + 3k + 2 = 3(3qk + 2q + k) +2 chia cho 3 dư 2.(đpcm)
Gọi k là một số nguyên, theo đề ta có:
a=3k+1
b=3k+2
ab=(3k+1)(3k+2)=9k^2+9k+2
vì 9k^2 và 9k chia hết cho 3
nên ab chia 3 dư 2
Ta có : a = 3n+1
b = 3m+2
a.b= 3(3nm+m+2n) +2 số này chia 3 sẽ dư 2.
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
a chia 7 dư 3 nên a = 7k + 3 \(\left(k\in N\right)\)
Ta có: \(a^2=\left(7k+3\right)^2=49k+42k+9=7\left(7k+6+1\right)+2\)
Vậy \(a^2\)chia 7 dư 2
ta có a:7 dư 3
suy ra a^2:7 dư 3 nhân 3
mà 3.3 =9. 9 chia 7 dư 2
vậy a^2 chia 7 dư 2