cho a là số tự mhiên lẻ,b là số tự nhiên. chứng minh rằng các số a và a.b+4 nguyên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

Gọi d là ƯSC(a; a.b + 22013)

=> a chia hết cho d và a.b + 22013 cũng chia hết cho d

Do a là số lẻ => d lẻ, 22013 là số chẵn mà d lẻ => 22013 chia hết cho d khi d = 1

=> a và a.b + 22013 là hai số nguyên tố cùng nhau

2 tháng 2 2017

Giả sử a và ab +  4 cùng chia hết cho số tự nhiên d ( d khác 0 ) 

Như vậy thì ab chia hết cho d , do đó hiệu ( ab + 4 ) - ab = 4 cũng chia hết cho d

=> d = { 1 ; 2 ; 4 }

Nhưng đầu bài đã nói a là 1 số tự nhiên lẻ => a và ab + 4 là các số nguyên tố cùng nhau 

 Gọi k là ước số của a và ab+4 
Do a lẻ => k lẻ 
Ta có:

      ab+4=kp (1) 
      a=kq (2) 
Thay (2) vào (1) 
=> kqb+4 =kp 
=> k(p-qb)=4 
=> p-qb =4/k 
do p-qb nguyên => k là ước lẻ của 4 => k=1 
Vậy a và ab+4 nguyên tố cùng nhau

13 tháng 2 2019

Bạn tìm trên mạng rồi vào câu hỏi của Messi ấy.

Có một bạn trả lời mà được Online Math lựa chọn luôn đó.