Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
vì n, n-1, n+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮3\\ \Rightarrow\left(n^3-n\right)⋮3\)
b) \(n^5-n=n\left(n^4-1\right)\\ =n\left(n^2-1\right)\left(n^2+1\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n^2-4+5\right)=\left(n-1\right)n\left(n+1\right)\left(n^2-4\right)+5\left(n-1\right)n\left(n+1\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n-2\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
Vì n-2, n-1, n, n+1, n+2 là 5 số nguyên liên tiếp nên có 1 số chia hết cho 5 ⇒ (n-2)(n-1)n(n+1)(n+2)⋮5
5⋮5⇒5(n-1)n(n+1)⋮5
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow n^5-n⋮5\)
a) Ta có: \(34^{2005}-34^{2004}\)
\(=17^{2005}\cdot2^{2005}-17^{2004}\cdot2^{2004}⋮17\)
b) Ta có: \(43^{2004}+43^{2005}\)
\(=43^{2004}\left(1+43\right)\)
\(=43^{2004}\cdot44⋮11\)
c) Ta có: \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9\cdot4⋮4\)
Bài làm:
a) \(a^2-a=a\left(a-1\right)\)
Vì a là số nguyên
=> a ; a-1 là 2 số nguyên liên tiếp
Vì trong 2 số nguyên liên tiếp tồn tại 1 số chẵn ( chia hết cho 2)
=> a(a-1) chia hết cho 2
=> \(a^2-a⋮2\)
Sai sai nên sửa đề:
b) \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)
Vì đó là tích 3 số nguyên liên tiếp và trong 3 số đó luôn tồn tại 1 số chia hết cho 3
=> (a-1)a(a+1) chia hết cho 3
=> \(a^3-a⋮3\)
c) \(a^5-a=a\left(a^2-1\right)\left(a^2+1\right)=\left(a-1\right)a\left(a+1\right)\left[\left(a^2-4\right)+5\right]\)
\(=\left(a-1\right)a\left(a+1\right)\left[\left(a-2\right)\left(a+2\right)+5\right]\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)
Vì (a-2)(a-1)a(a+1)(a+2) là tích 5 số nguyên liên tiếp và trong 5 số đó luôn tồn tại 1 số chia hết cho 5
=> (a-2)(a-1)a(a+1)(a+2) chia hết cho 5
Mà 5(a-1)a(a+1) chia hết cho 5
=> \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
+) Ta có a2 - a = a( a - 1 )
Vì a , a - 1 là hai số nguyên liên tiếp => Ít nhất 1 trong 2 số chia hết cho 2
=> a( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2 ( đpcm )
+) Ta có a3 - a = a( a2 - 1 ) = a( a - 1 )( a + 1 ) ( sửa 3 thành a may ra tính được )
Vì a ; a - 1 ; a + 1 là 3 số nguyên liên tiếp => Ít nhất 1 trong 3 số chia hết cho 3
=> a( a - 1 )( a + 1 ) chia hết cho 3 hay a3 - a chia hết cho 3 ( đpcm )