K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2023

\(a-\dfrac{18}{a+1}=-4\) (ĐK: \(a>0,a\ne-1\)

\(\Rightarrow\dfrac{a\left(a+1\right)}{a+1}-\dfrac{18}{a+1}=-4\)

\(\Rightarrow\dfrac{a\left(a+1\right)-18}{a+1}=-4\)

\(\Rightarrow\dfrac{a^2+a-18}{a+1}=-4\)

\(\Rightarrow a^2+a-18=-4\left(a+1\right)\)

\(\Rightarrow a^2+a-18=-4a-4\)

\(\Rightarrow a^2+a+4a-18+4=0\)

\(\Rightarrow a^2+5a-14=0\)

\(\Rightarrow a^2+5a+\dfrac{25}{4}-\dfrac{81}{4}=0\)

\(\Rightarrow\left[a^2+2\cdot\dfrac{5}{2}\cdot a+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{81}{4}=0\)

\(\Rightarrow\left(a+\dfrac{5}{2}\right)^2=\dfrac{81}{4}\)

\(\Rightarrow\left(a+\dfrac{5}{2}\right)^2=\left(\dfrac{9}{2}\right)^2\)

TH1: \(a+\dfrac{5}{2}=\dfrac{9}{2}\)

\(\Rightarrow a=\dfrac{9}{2}-\dfrac{5}{2}\)

\(\Rightarrow a=2\left(tm\right)\) 

TH2: \(a+\dfrac{5}{2}=-\dfrac{9}{2}\)

\(\Rightarrow a=-\dfrac{9}{2}-\dfrac{5}{2}\)

\(\Rightarrow a=-7\left(ktm\right)\)

Vậy số thực dương a thỏa mãn là a = 2 

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

$a^2-2ab-3b^2\geq 0$

$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$

$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$

$\Leftrightarrow (a+b)(a-3b)\geq 0$

$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)

$\Leftrightarrow a\geq 3b$

Xét hiệu:

$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$

$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$

$\Rightarrow P\geq \frac{37}{3}$

Vậy $P_{\min}=\frac{37}{3}$

AH
Akai Haruma
Giáo viên
27 tháng 11 2021

Lời giải:

Đặt $\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=t$

$\Rightarrow a+b=3t; b+c=4t; c+a=5t$

$\Rightarrow a+b+c=\frac{3t+4t+5t}{2}=6t$

$\Rightarrow c=6t-3t=3t; b=6t-5t=t; a=6t-4t=2t$

Khi đó: 

$P=17a-7b-9c+2019=17.2t-7t-9.3t+2019=0.t+2019=2019$

26 tháng 8 2023

a) Đặt \(ƯCLN\left(5a+3,7a+4\right)=d\)

\(\Rightarrow\left\{{}\begin{matrix}5a+3⋮d\\7a+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}35a+21⋮d\\35a+20⋮d\end{matrix}\right.\)

\(\Rightarrow\left(35a+21\right)-\left(35a+20\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(5a+3,7a+4\right)=1\) hay phân số \(\dfrac{5a+3}{7a+4}\) là phân số tối giản. Thế thì phân số này không thể rút gọn cho nguyên nào khác 1.

b) \(A=\dfrac{5a+3}{7a+4}\)

\(A=\dfrac{\dfrac{5}{7}\left(7a+4\right)+\dfrac{1}{7}}{7a+4}\)

\(A=\dfrac{5}{7}+\dfrac{1}{7\left(7a+4\right)}\)

 Nếu \(a< 0\) thì \(A< \dfrac{5}{7}\) còn nếu \(a\ge0\) thì \(A>\dfrac{5}{7}\). Do đó ta chỉ cần tìm giá trị lớn nhất của A khi \(a>0\). Để A lớn nhất thì \(7a+4\) nhỏ nhất hay \(a=0\). Vậy để phân số A lớn nhất thì \(a=0\)

17 tháng 12 2023

C đúng