Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Gỉa sử : a+b+c> 1/a + 1/b + 1/c nhưng không thỏa mãn một và chỉ một trong 3 số a,b,c lớn hơn 1
*TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1)
*TH2: có 2 số lớn hơn 1
Gỉa sử: a>1, b>1, c<1 <=> a-1>0 , b-1>0 , c-1<0
=> (a-1)(b-1)(c-1)<0
=>abc+a+b+c-(ab+bc+ca)-1<0
<=>a+b+c<ab+bc+ca
<=>a+b+c<abc/c+abc/a+abc/b
Thay abc=1 ta được:
a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai)
=>đpcm
Trường hợp 1: Giả sử ba số , , đều lớn hơn hoặc ba số , , đều nhỏ hơn .
Khi đó
a.b.c (trái với giả thiết).
Trường hợp 2: Giả sử hai trong ba số , , lớn hơn 1.
Không mất tính tổng quát, giả sử và .
Vì nên do đó:
a + b + c < + \(\dfrac{abc}{a}\) + \(\dfrac{abc}{b}\)
⇔ a + b + c < \(\dfrac{1}{c}\) + \(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) (mâu thuẫn với giả thiết)
Vậy chỉ có một và chỉ một trong ba số , , lớn hơn
Đáp án D
Dựa vào các bước chứng minh ta thấy lập luận đó là chính xác tất cả các bước.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
a. a dương => a > 0; a \(\in\) Z+
Số liền sau của a là : a + 1
Mà 1 > 0; 1 \(\in\) Z+ => a + 1 > 0; a + 1 \(\in\) Z+
=> Nếu a dương thì số liền sau a cũng dương.
b. a âm => a < 0; a \(\in\) Z-
Số liền trước của a là: a - 1
Mà -1 < 0; -1 \(\in\) Z- => a - 1 < 0; a - 1 \(\in\) Z-
=> Nếu a âm thì số liền trước a cũng âm.
c. Kết luận: Số liền sau của 1 số dương là 1 số dương, số liền trước của 1 số âm là 1 số âm.
a.a dương => a > 0; a\(\in\) 2
Số liền sau của a là : a + 1
Mà 1 > 0; 1 \(\in\) Z+ => a + 1 > 0; a + 1 \(\in\) Z+
=> Nếu a dương thì số liền sau a cũng dương
b.a âm => a < 0; a\(\in\) Z
Số liền trước của a là : a - 1
Mà - 1 < 0; - 1 < 0; a - 1 \(\in\) Z
=> Nếu a âm thì số liền trước a cũng âm
c.Kết luận : Số liền sau của 1 số dương thì 1 số dương:số liền trước của 1 số âm thì 1 số âm