\(a\) là một số gồm \(2n\) chữ số \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

\(a=111...11\) (2n chữ số 1)

\(9a=999...99\) (2n chữ số 9)

\(9a+1=1000...00\) (2n chữ số 0) 

\(\Rightarrow9a+1=10^{2n}\Rightarrow a=\dfrac{10^{2n}-1}{9}\)

Tương tự ta cũng có

\(b=\dfrac{10^{n+1}-1}{9}=\dfrac{10.10^n-1}{9}\)

\(c=\dfrac{10^n-1}{9}\)

\(\Rightarrow a+b+6c+8=\)

\(\dfrac{10^{2n}}{9}-\dfrac{1}{9}+\dfrac{10.10^n}{9}-\dfrac{1}{9}+\dfrac{6.10^n}{9}-\dfrac{6}{9}+8=\)

\(=\dfrac{10^{2n}}{9}+\dfrac{16.10^n}{9}+\dfrac{64}{9}=\)

\(=\left(\dfrac{10^n}{3}\right)^2+2.\dfrac{10^n}{3}.\dfrac{8}{3}+\left(\dfrac{8}{3}\right)^2=\)

\(=\left(\dfrac{10^n}{3}+\dfrac{8}{3}\right)^2\) Là một số chính phương

28 tháng 1 2017

Giải:

4.Theo đề bài ta có:

\(A=7.a+4 \)

\(=17.b+3 \)

\(=23.c+11 (a,b,c ∈ N)\)

Nếu ta thêm 150 vào số đã cho thì ta lần lượt có:

\(A+150=7.a+4+150=7.a+7.22=7.(a+22)\)

\(=17.b+3+150=17.b+17.9=17.(b+9)\)

\(=23.c+11+150=23.c+23.7=23.(c+7) \)

\(\Rightarrow A+150⋮7;17;23\).Nhưng 7, 17 và 23 là ba số đôi một nguyên tố cùng nhau, suy ra \(A+150⋮7.17.13=2737\)

Vậy \(A+150=2737k\left(k=1;2;3;4;...\right)\)

Suy ra: \(A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k+2587\)

Do \(2587<2737\)

\(\Rightarrow A\div2737\)\(2587\)

29 tháng 1 2017

Bạn ơi, A=23c+7 chứ. Sao lại= 23c+11?

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

Bài 1 : 

\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)

     \(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)

      \(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)

      \(=\frac{13.\left(84+70+63+60\right)}{2520}\)

       \(=\frac{13.277}{2520}\)

Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)

Vậy a chia hết cho 13

Bài 2 :

Ta có :  \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)

Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)

Từ (1)  ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau

Suy ra ;\(b'⋮b\left(2\right)\)

Tương tự ta cũng có \(b⋮b\left(3\right)\)

Từ (2 ) và (3 ) suy ra \(b=b'\)

Chúc bạn học tốt ( -_- )

18 tháng 3 2018

a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.

TH1: n+1=1 => n=0 => n+3=3 (t/m)

TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)

=> n=0.

b, A không tối giản => ƯCLN(n+3;n-5) >1

=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.

18 tháng 3 2018

Ko có số tự nhiên n thõa mãn điều kiện. k mik nhé nếu muốn hỏi j thêm về câu này thì cứ nhắn tin riêng cho mik

20 tháng 2 2018

Ta có

2n+5  chia hết cho n-1

Tách 2n+5=2n-1+6

Vì 2n-1 đã chia hết cho n-1 nên 6 phải chia hết cho n-1

Suy ra n-1 thuộc ước của 6

Mà ước của 6=

là 1;-1;2;-2;3;-3;6;-6.

Rồi sau đo bạn thử n-1 với từng trường hợp

Thấy n nào nguyên tố thì đó là đáp an

6 tháng 3 2021

Giả sử \(a< b< c\)thì \(a\ge2\)\(;\)\(b\ge3\)\(;\)\(c\ge5\)

Ta có:

\(\frac{1}{\left[a,b\right]}=\frac{1}{ab}\le\frac{1}{6}\)\(;\)\(\frac{1}{\left[b,c\right]}=\frac{1}{bc}\le\frac{1}{15}\)\(;\)\(\frac{1}{\left[c,a\right]}=\frac{1}{ca}\le\frac{1}{10}\)

Do đó: \(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\)\(\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)

\(\Rightarrow\)\(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\)\(\frac{1}{3}\)\(\rightarrowĐPCM\)