Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
a=17x+11=23y+18=11z+3 (x,y,z E N)
=> a+74=17x+85=23y+92=11z+77
=> a+74 chia hết cho 17;23;11
Vì 3 số trên ntcn nên: a+74 chia hết cho 17.23.11=4301
Đặt: a+74=4301k (k E N*)
=> a=4301(k-1)+4227
nên: số dư của a khi chia cho 4301 là: 4227
b) 11+25+39+413+..........+505201
Ta dễ thấy rằng: 1;5;9;...vv là các số có dạng: 4k+1 (k E N)
=> 11+25+39+............+505201=(...1)+(...2)+(....3)+(...4)+........+(...4)+(...5)
Tổng tận cùng của 10 stn liên tiếp là:
1+2+3+4+5+6+7+8+9+0=45 có tc=5
Ta có 50 cặp nv nên sẽ có tc=0
5 số cuối là: (...1);(...2);(...3);(..4);(...5)
tc=1+2+3+4+5=15 có tc=5
Vậy tổng trên có tc=0+5=5
A có tc=5
Ta chọn một số chia 9 dư 5 6 4 bất kì:ta lấy số 14 15 13 đã chia 9 dư 5 6 4
=>14 +15 : 9 =3,(2) rồi ta lấy 3 x 9 =27 29-27=2
=>14+13 : 9 =3 rồi ta lấy 3 x 9 =27 27 - 27 =0
a+b chia 9 dư 2
a+c chia 9 dư 0
1) Gọi 2 số lẻ là 2n + 1 và 2k + 3 (n và k là các số tự nhiên bất kì)
ta có tổng 2 số lẻ là:
2n + 1 + 2k + 3 = 2n + 2k + 4
= 2(n+k+2) chia hết cho 2 nên là số chẵn.
2) Gọi 2 số chẵn là 2x và 2k ( x và k là số tự nhiên bất kì)
Tích của chúng là:
\(2x\times2k=4xk\) chia hết cho 4.
Tương tự với 3 số tự nhiên chẵn chia hết cho 8
a và b chia 5 dư 3 suy ra a và b có dạng 5k+3
c là số chia cho 5 dư 2 nên c có dạng 5k+2
tổng a+b+c= 5k+3+5k+3+5k+2= 15k+8
15k chia hết cho 5 còn 8 chia 5 dư 3
suy ra a+b+c chia 5 dư 3
Mình làm trước, chọn mình nha
Theo đề ta có a=5k+2
b=5q+3
13a+11b=13(5k+2)+11(5q+3)=65k+26+55q+33=(65k+55q)+59
Ta có 65k+55q chia hết cho 5 vì mỗi số hạng đều chia hết cho 5
59 chia 5 dư 4
Vậy 13a+11b chia 5 dư 4