K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

Gọi abcde là số có 5 chữ số khác nhau.

a#0=>a có 6 cách chọn

=>b,c,d,e có 6A4 cách chọn

Theo quy tắc nhân có: 6.6A4=2160(số)

                   

31 tháng 7 2021

Số có 5 chữ số có dạng: \(\overline{abcde}\)

TH1: \(e=0\)

Số cách chọn \(\overline{abcd}\) là: \(C_4^6\)

TH2: \(e=5\)

\(a\) có 5 cách chọn

Số cách chọn \(\overline{bcd}\) là: \(C_3^5\)

Vậy lập được \(C_4^6+5.C_3^5=65\) số có 5 chữ số chia hết cho 5

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:
Gọi số cần tìm là $\overline{a_1a_2a_3a_4a_5}$

TH1: $a_5=5$

$a_1$ có 5 cách chọn 

$a_2$ có 5 cách chọn

$a_3$ có 4 cách chọn 

$a_4$ có 3 cách chọn

$\Rightarrow$ lập được $5.5.4.3=300$ số

TH2: $a_5=0$

$a_1$ có 6 cách chọn 

$a_2$ có 5 cách chọn

$a_3$ có 4 cách chọn 

$a_4$ có 3 cách chọn

$\Rightarrow$ lập được $6.5.4.3=360$ số

Tổng các số lập được: $300+360=660$ số

30 tháng 3 2023

Có 5 cách chọn chữ số hàng trục nghìn
Có 5 cách chọn chữ số hàng nghìn
Có 5 cách chọn chữ số hàng trăm
Có 5 cách chọn chữ số hàng trục
Có 5 cách chọn chữ số hàng đơn vị
=> Có thể  lập được bao nhiêu số tự nhiên có 5 chữ số từ các số đã cho là:
5.5.5.5.5 = 3125 ( số )

 

TH1: f=0

=>Có 8*7*6*5*4=6720 cách

TH2: f=5

=>Có 7*7*6*5*4=5880 cách

=>Có 6720+5880=12600 cách

NV
31 tháng 3 2023

Gọi chữ số hàng đơn vị là a

TH1: \(a=0\Rightarrow\) 3 chữ số còn lại có \(A_6^3\) cách chọn và hoán vị

TH2: \(a=5\)

\(\Rightarrow\) Chữ số hàng nghìn có 5 cách chọn (khác 5 và 0), 2 chữ số còn lại có \(A_5^2\) cách

\(\Rightarrow A_6^3+5.A_5^2\) số

\(\overline{abcd}\)

TH1: d=0

=>CÓ 6*5*4=120 cách

TH2: d=5

=>Có 5*5*4=100 cách

=>Có 120+100=220 cách

28 tháng 3 2022

45 

30 tháng 8 2017

Đáp án C

Gọi số cần tìm có dạng  

TH1: 2 số lẻ liên tiếp ở vị trí ab

a có 3 cách chọn

b có 2 cách chọn

c có 4 cách chọn

d có 3 cách chọn

e có 2 cách chọn

TH2:2 số lẻ liên tiếp ở vị trí bc

a có 3 cách chọn

b có 3 cách chọn

c có 2 cách chọn

d có 3 cách chọn

e có 2 cách chọn

TH3: 2 số lẻ liên tiếp ở vị trí cd (tượng tự TH2)

Vậy số cách chọn thỏa mãn yêu cầu đề bài là:

3.2.4.3.2+2.(3.3.2.3.2)=360