K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

Ta có : \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để \(A\) là số nguyên nên \(\frac{4}{\sqrt{x}-3}\) phải là số nguyên \(\left(1\right)\)

Khi \(x\) là số nguyên \(\sqrt{x}\) hoặc là số nguyên hoặc là số vô tỉ

Nếu \(\sqrt{x}\) là số vô tỉ thì \(\sqrt{x}-3\) là số vô tỉ , trái với \(\left(1\right)\)

Vậy \(\sqrt{x}\) là số nguyên

Từ \(\left(1\right)\Rightarrow\sqrt{x}-3\) phải là \(Ư\left(4\right)\) . Ta có bảng sau :

\(\sqrt{x}-3\)\(-4\)\(-2\)\(-1\)\(1\)\(2\)\(4\)
\(\sqrt{x}\)\(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)
\(x\)Không có giá trị của x\(1\)\(4\)\(16\)\(25\)\(49\)

Vậy \(x\in\left\{1;4;16;25;49\right\}\)

 

1 tháng 10 2019

Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)

Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5

 Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)

Vậy B đạt giá  trị lớn nhất là 3/19 khi và chỉ khi x = 5

C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2

Suy ra x là số chính phương lẻ

 Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}

10 tháng 12 2016

Bạn ơi !

10 tháng 12 2016

Hình như là đề sai rồi đúng k ??

6 tháng 6 2015

Nhận thấy : \(\sqrt{x}+1\)chia cho \(\sqrt{x}-3\)bằng 1 dư 4

Để \(\sqrt{x}+1\)chia hết cho \(\sqrt{x}-3\)thì \(\sqrt{x}-3\)phải thuộc vào tập hợp ước của 4 gồm : 1;-1;2;-2;4;-4

Bạn tự làm nốt nhé!! Chỉ cần Đưa về dạng đẳng thức và giải ra thôi.

 

17 tháng 1 2020

1. Ta có: A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A \(\in\)Z <=> \(4⋮\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Lập bảng:

\(\sqrt{x}-3\)   1  -1  2   -2   4   -4
\(\sqrt{x}\)  4  2  5  1  7 -1 (loại)
x 16 4 25 1 49 

Vậy ....

17 tháng 1 2020

2. Ta có: B = \(\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)

Do x2 + 3 \(\ge\)3  \(\forall\)x => \(\frac{12}{x^2+3}\le4\forall x\)

=> \(1+\frac{12}{x^2+3}\le5\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy Max B = 5 khi x = 0