K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : 

\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)

     \(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)

      \(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)

      \(=\frac{13.\left(84+70+63+60\right)}{2520}\)

       \(=\frac{13.277}{2520}\)

Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)

Vậy a chia hết cho 13

Bài 2 :

Ta có :  \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)

Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)

Từ (1)  ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau

Suy ra ;\(b'⋮b\left(2\right)\)

Tương tự ta cũng có \(b⋮b\left(3\right)\)

Từ (2 ) và (3 ) suy ra \(b=b'\)

Chúc bạn học tốt ( -_- )

30 tháng 5 2015

1/2+1/3+1/4+...+1/18=A/B =a/b( Với a/b là phân số tối giản, 

và A/B là phân số chưa tối giản) 

=> B là BCNN của 2,3,4,...,18 = 2^4.3^2.5.7.11.13.17= 

12252240 

Ta nhận thấy các phân số sau khi qui đồng đều có tử chia 

hết cho 11 trừ phân số 1/11 => A không chia hết cho 11, B 

chia hêt cho 11 => b chia hết cho 11(1) 

Bằng cách lý luận tương tự ta cũng có A không chia hết cho 

13; 17 mà B chia hết cho 13; 17 => b chia hết cho 13; 17(2) 

Từ (1); (2) => b chia hết cho 11.13.17=2431( Do 11, 13, 17 

là các số nguyên tố => đpcm

30 tháng 5 2015

1/2+1/3+1/4+...+1/18=A/B =a/b( Với a/b là phân số tối giản, 

và A/B là phân số chưa tối giản) 

=> B là BCNN của 2,3,4,...,18 = 2^4.3^2.5.7.11.13.17= 

12252240 

Ta nhận thấy các phân số sau khi qui đồng đều có tử chia 

hết cho 11 trừ phân số 1/11 => A không chia hết cho 11, B 

chia hêt cho 11 => b chia hết cho 11(1) 

Bằng cách lý luận tương tự ta cũng có A không chia hết cho 

13; 17 mà B chia hết cho 13; 17 => b chia hết cho 13; 17(2) 

Từ (1); (2) => b chia hết cho 11.13.17=2431( Do 11, 13, 17 

là các số nguyên tố => đpcm

Bài 1 .

a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :

2n + 3 - 2( n + 1 ) \(⋮\)cho d

\(\Rightarrow\)1 chia hết cho d => d = + , - 1

b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :

4n + 8 - 2( 2n + 3 ) \(⋮\)cho d

\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1

c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).

12 tháng 2 2018

vì đầu bài bảo nó chưa tối giản

12 tháng 2 2018

\(\frac{a}{b}\) là phân số chưa tối giản

\(\Leftrightarrow\hept{\begin{cases}a=k.a_1\\b=k.b_1\end{cases}}\) \(\left[ƯCLN\left(a;b\right)=k;ƯCLN\left(a_1;b_1\right)=1\right]\)

\(\frac{2a}{a-2b}=\frac{2.k.a_1}{k.a_1-2.k.b_1}=\frac{2k.a_1}{k\left(a_1-2.b_1\right)}\) chưa tối giản

=> đpcm

9 tháng 3 2017

Để quy đồng các mẫu của các phân số trong tổng A = \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\), ta chọn mẫu chung là tích của 26 với các thừa số lẻ nhỏ hơn 100 . Gọi k1 , k2 , ... k100 là các thừa số phụ tương ứng  , tổng A có dạng : B = \(\frac{\left(k1+k2+k3+...+k100\right)}{2^6.3.5.7....99}\)

Trong 100 phân số của tổng A chỉ có duy nhất phân số \(\frac{1}{64}\)có mẫu chứa 26 nên trong các thừa số phụ k1 , k2 , ... , k100 chỉ có k64 ( thừa số phụ của \(\frac{1}{64}\)) là số lẻ ( bằng 3.5.7...99 ) , còn các thừa số phụ khác đều chẵn ( vì chứa ít nhất một thừa số 2 ) do đó B ( tức là A ) không thể là số tự nhiên