\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

Ta có:

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2014^2}\)

\(< \frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{2013\cdot2014}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{2013}-\frac{1}{2014}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2014}\)

\(=\frac{3}{4}-\frac{1}{2014}\)

\(< \frac{3}{4}\)

Ta có: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)

\(=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\right)\)

Nhận xét: \(\frac{1}{2^2}=\frac{1}{4}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

\(\frac{1}{5^2}< \frac{1}{4\cdot5}\)

...

\(\frac{1}{2014^2}< \frac{1}{2013\cdot2014}\)

Do đó: \(\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\right)< \frac{1}{4}+\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2013\cdot2014}\right)\)

\(\Leftrightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(\Leftrightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2014}\)

\(\Leftrightarrow A< \frac{3019}{4028}\)

\(\frac{3019}{4028}< \frac{3021}{4028}=\frac{3}{4}\)

nên \(A< \frac{3}{4}\)(đpcm)

28 tháng 6 2020

cảm ơn <3

10 tháng 5 2019

\(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

.......................................

\(\frac{1}{2014^2}=\frac{1}{2014\cdot2014}< \frac{1}{2013\cdot2014}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2013\cdot2014}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Rightarrow A< 1-\frac{1}{2014}=\frac{2013}{2014}\)

10 tháng 5 2019

Trần Nhật Dương    Chứng minh \(A< \frac{3}{4}\) mà :)) 

20 tháng 2 2020

Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

            \(\frac{1}{5^2}< \frac{1}{4.5}\)

             ...

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)  

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

Vậy A<\(\frac{3}{4}\)

20 tháng 2 2020

A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)

5 tháng 5 2019

\(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot.....\cdot\frac{899}{30^2}\)

\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot.....\cdot\frac{29\cdot31}{30\cdot30}\)

\(=\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\frac{3}{4}\cdot\frac{5}{4}\cdot....\cdot\frac{29}{30}\cdot\frac{31}{30}\)

\(=\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{29}{30}\right)\cdot\left(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot....\cdot\frac{31}{30}\right)\)

\(=\frac{1}{30}\cdot\frac{31}{2}\)

\(=\frac{31}{60}\)

b, \(A=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

Ta có:

\(\frac{3}{15}< \frac{3}{10}=\frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{11}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{12}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{13}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{14}< \frac{3}{10}\)

\(\Rightarrow\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}< \frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)

\(\Rightarrow\frac{3\cdot5}{15}< A< \frac{3\cdot5}{10}\)

\(\Rightarrow1< A< \frac{15}{10}=\frac{3}{2}\)

\(\frac{3}{2}< 2\)

\(\Rightarrow1< A< 2\)

c ,Ta có

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)+\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)

5 tháng 5 2019

thanks!!!vui

a, M=1/1.2+1/2.3+...+1/49.50
M=1−1/2+1/2−1/3+...+1/49−1/50
M=1−1/50<1

Vậy M<1

16 tháng 6 2019

\(a,\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}< 1\)

\(=>M< 1\)

11 tháng 5 2018

\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}< 1\)

\(\Rightarrow A< 1\)

11 tháng 5 2018

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow A< 1-\frac{1}{10}\)

\(\Rightarrow A< 1\left(đpcm\right)\)

Vậy \(A< 1\)