\(\frac{1}{1\cdot2^2}\) + \(\frac{1}{2\cdot3^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

\(A< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{49.50.51}.\)

\(2A< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{49.50.51}\)

\(2A< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{51-49}{49.50.51}\)

\(2A< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{49.50}-\frac{1}{50.51}\)

\(2A< \frac{1}{2}-\frac{1}{50.51}< \frac{1}{2}\Rightarrow A< \frac{1}{4}< \frac{1}{2}\)

20 tháng 1 2017

tao biết làm câu a rồi

22 tháng 10 2017

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)

\(=2-\frac{1}{100!}< 2\)

23 tháng 9 2018

\(C=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+....+\frac{99.100-1}{100!}\)

\(\Rightarrow C=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(\Rightarrow C=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(\Rightarrow C=\left(2+\frac{3.4}{4!}+\frac{4.5}{5!}+....+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{10!}\right)\)

\(\Rightarrow C=\left(2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(\Rightarrow C=2-\frac{1}{99!}-\frac{1}{100!}< 2\Rightarrow C< 2\)

\(b,C=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+....+\frac{19}{9^2.10^2}\)

\(\Rightarrow C=\frac{3}{\left(1.2\right)\left(1.2\right)}+\frac{5}{\left(2.3\right)\left(2.3\right)}+...+\frac{19}{\left(9.10\right)\left(9.10\right)}\)

\(\Rightarrow C=\frac{3}{1.2}.\frac{1}{1.2}+\frac{5}{2.3}.\frac{1}{2.3}+....+\frac{19}{9.10}.\frac{1}{9.10}\)

\(\Rightarrow C=\left(1+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{3}\right)\left(\frac{1}{2}-\frac{1}{3}\right)+....+\left(\frac{1}{9}+\frac{1}{10}\right)\left(\frac{1}{9}-\frac{1}{10}\right)\)

\(\Rightarrow C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{90}\)

\(\Rightarrow C=1-\frac{1}{90}< 1\Rightarrow C< 1\)

30 tháng 5 2018

\(c)\)

\(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=\left(7-\frac{1}{50}+x\right)\)

\(\Rightarrow2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{49.50}\right)=\left(\frac{350}{50}-\frac{1}{50}+x\right)\)

\(\Rightarrow2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)

\(\Rightarrow2x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)-x=\frac{349}{50}\)

\(\Rightarrow x-\left(1-\frac{1}{50}\right)=\frac{349}{50}\)

\(\Rightarrow x-\frac{49}{50}=\frac{349}{50}\)

\(\Rightarrow x=\frac{349}{50}+\frac{49}{50}\)

\(\Rightarrow x=\frac{199}{25}\)

Vậy \(x=\frac{199}{25}\)

~ Ủng hộ nhé 

30 tháng 5 2018

\(a)2.x-3=x+\frac{1}{2}\)

\(\Rightarrow2x-3-x=\frac{1}{2}\)

\(\Rightarrow x-3=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}+3\)

\(\Rightarrow x=\frac{1}{2}+\frac{6}{2}\)

\(\Rightarrow x=\frac{7}{2}\)

Vậy \(x=\frac{7}{2}\)

\(b)4.x-\left(2.x+1\right)=3-\frac{1}{3}+x\)

\(\Rightarrow4.x-2.x-1=\frac{9}{3}-\frac{1}{3}+x\)

\(\Rightarrow2.x-1=\frac{8}{3}+x\)

\(\Rightarrow2x-1-x=\frac{8}{3}\)

\(\Rightarrow x-1=\frac{8}{3}\)

\(\Rightarrow x=\frac{8}{3}+1\)

\(\Rightarrow x=\frac{8}{3}+\frac{3}{3}\)

\(\Rightarrow x=\frac{11}{3}\)

Vậy \(x=\frac{11}{3}\)

~ Ủng hộ nhé 

9 tháng 7 2016

Mình chỉ làm cho bạn câu d và e thôi 

d)  ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....... +1/99 - 1/100 ) . (x - 3)=1

     ( 1 - 1/100 ) . (x - 3 )=1

     99/100.(x -3)=1

     x - 3 = 1:99/100

     x - 3 =100/99

     x = 100/99 + 3

     x = 397/99

e) (1/2 . (1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +.....+1/99 - 1/101 ) . (x+2) =3/101

   (1/2 . ( 1 - 1/101 ).(x+2)=3/101

   (1/2 . 100/101 ) . (x + 2) =3/101

   100/202 . ( x + 2 )= 3/101

   50/101 . (x + 2 ) = 3/101

  x + 2 = 3/101 :50/101

  x+2=3/50

  x =3/50-2

x= -97/100

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)