Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.1.3}+\frac{1}{2.3.5}+\frac{1}{3.5.7}+\frac{1}{4.7.9}+...+\frac{1}{100.199.201}\)
\(S=\frac{1}{3}+\frac{2}{4.3.5}+\frac{2}{6.5.7}+\frac{2}{8.7.9}+...+\frac{2}{200.199.201}\)
Ta có: \(\frac{2}{3.4.5}< \frac{2}{3.5}\)
\(\Rightarrow S< \frac{1}{3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{199.201}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{199}-\frac{1}{201}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{3}-\frac{1}{201}\)
\(\Rightarrow S< \frac{2}{3}-\frac{1}{201}< \frac{2}{3}\)
\(\Rightarrow S< \frac{2}{3}\)
Chúc học tốt.
A<1
bạn tính phần mẫu ra rồi làm như dạng sai phân bình thường
Ta có: \(\frac{1}{n.\left(1980-n\right)}\)=\(\frac{1}{1980}\).\(\left(\frac{1}{n}-\frac{1}{1980+n}\right)\) (1)
\(\frac{1}{m.\left(25+m\right)}\)=\(\frac{1}{25}\).\(\left(\frac{1}{25}-\frac{1}{25+m}\right)\) (2)
Áp dụng khai triển (1) cho mỗi số hạng của A và khai triển (2) cho mỗi số hạng của B, ta được:
A=\(\frac{1}{1980}\).\(\left(\frac{1}{1}-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+...+\frac{1}{25}-\frac{1}{2005}\right)\)
=\(\frac{1}{1980}\).\(\left[\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\) (3)
Nhận thấy hai biểu thức trong hai dấu ngoặc vế bên phải của B có phần chung là:\(\frac{1}{26}\)+\(\frac{1}{27}\)+...+\(\frac{1}{1980}\).Do đó, sau khi rút gọn, ta được:
B=\(\frac{1}{25}\).\(\left[\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\) (4)
Từ (3) và (4), suy ra: A:B=\(\frac{25}{1980}\)=\(\frac{5}{396}\)
Vậy ta được \(\frac{A}{B}\)=\(\frac{5}{396}\)
Lời giải:
a) Số hạng thứ $n$: \(\frac{1}{n(2n-1)(2n+1)}\)
b) Tổng $A$ có 2011 số hạng có dạng là:
\(A=\frac{1}{1.1.3}+\frac{1}{2.3.5}+....+\frac{1}{2011.4021.4023}\)
\(A=\frac{2}{2.1.3}+\frac{2}{4.3.5}+\frac{2}{6.5.7}+....+\frac{2}{4022.4021.4023}\)
\(=\frac{2}{1.2.3}+\frac{2}{3.4.5}+\frac{2}{5.6.7}+...+\frac{2}{4021.4022.4023}\)
\(< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2011.2012.2013}\)
$A< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2013-2011}{2011.2012.2013}$
$A< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-....-\frac{1}{2012.2013}$
$A< \frac{1}{2}-\frac{1}{2012.2013}< \frac{1}{2}< \frac{2}{3}$