Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ước chung nguyên tố của 2n + 3 và 4n + 1
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)
+) Vì : \(2n+3⋮d;2\in N\)
\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\)
Mà : \(4n+1⋮d\)
\(\Rightarrow\left(4n+6\right)-\left(4n+1\right)⋮d\)
\(\Rightarrow4n+6-4n-1⋮d\Rightarrow5⋮d\)
\(\Rightarrow\) d là ước của 5 ; d nguyên tố
\(\Rightarrow d=5\)
Với \(d=5\Rightarrow4n+1⋮5\)
\(\Rightarrow5n-n+1⋮5\Rightarrow5n-\left(n-1\right)⋮5\)
Vì : \(n\in N\Rightarrow5n⋮5\)
\(\Rightarrow n-1⋮5\Rightarrow n-1=5k\Rightarrow n=5k+1\)
Thử lại : n = 5k + 1 ( \(k\in N\))
\(2n+3=2\left(5k+1\right)+3=10k+5=5\left(2k+1\right)⋮5\)
\(4n+1=4\left(5k+1\right)+1=20k+5=5\left(4k+1\right)⋮5\)
\(\Rightarrow\) Với n = 5k + 1 thì phân số trên rút gọn được
\(\Rightarrow n\ne5k+1\) thì phân số trên tối giản
Vậy \(n\ne5k+1\)
Hai câu cuối tương tự
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
Để A nguyên thì 6n + 5 chia hết cho 2n - 1
=> 6n - 3 + 8 chia hết cho 2n - 1
<=> 3.(2n - 1) + 8 chia hết cho 2n - 1
=> 8 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(8) = {-8;-4;-2;-1;1;2;4;8}
Ta có bảng :
2n - 1 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
2n | -7 | -3 | -1 | 0 | 2 | 3 | 5 | 9 |
2n | 0 | 1 |
Ta có : \(A=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{6n-3}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)
Để A nguyên thì : 2n - 1 thuộc Ư(8) = {-8;-4;-2;-1;1;2;4;8}
=> 2n = {-7;-3;-1;0;2;3;5;9}
=> 2n = {0;1}
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
Ta có:\(A=\frac{6n-4}{2n-3}=\frac{3\left(2n-3\right)+5}{2n-3}=\frac{3\left(2n-3\right)}{2n-3}+\frac{5}{2n-3}=3+\frac{5}{2n-3}\)
Để A có giá trị lớn nhất thì \(\frac{5}{2n-3}\) có giá trị lớn nhất.
\(\Rightarrow2n-3\) có giá trị nhỏ nhất.
Với \(n\le1\Rightarrow2n\le2\Rightarrow2n-3\le-1\Rightarrow\frac{5}{2n-3}< 0\left(L\right)\)
Với \(n>1\Rightarrow2n-3\ge1\Rightarrow\frac{5}{2n-3}\le5\)
Dấu "=" xảy ra khi và chỉ khi n=2.
Vậy \(A_{max}=8\Leftrightarrow n=2\) .
\(A=\frac{6n-4}{2n-3}=\frac{3\left(2n-3\right)+5}{2n-3}=3+\frac{5}{2n-3}\)
A lớn nhất khi \(\frac{5}{2n-3}\)lớn nhất
Mà \(5>0\) \(\Rightarrow\) \(2n-3\) là số nguyên dương nhỏ nhất
\(\Rightarrow\) \(2n-3=1\) \(\Rightarrow\) \(2n=4\) \(\Rightarrow\) \(n=2\)
\(\Rightarrow\) \(GTLN\) của A là 8 khi n = 2
Study well ! >_<
tìm số nguyên n để :
a,\(\left(n+5\right)⋮\left(n+1\right)\)
b,\(\left(6n+4\right)⋮\left(2n+1\right)\)
a)
\(n+5⋮n+1\)
\(\Rightarrow n+1+4⋮n+1\)
\(\Rightarrow4⋮n+1\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3;3;-5\right\}\)
\(a,\left(n+5\right)⋮\left(n+1\right)\Leftrightarrow\left(n+1\right)+4⋮\left(n+1\right)\)
\(\Leftrightarrow4⋮n+1\left(n\inℤ\right)\)
\(\Leftrightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow n=-2;0;-3;1;-5;3\)
Vậy \(n=-5;-3;-2;0;1;3\)
Ta có : \(\frac{n-3}{n+4}=\frac{n+4-7}{n+4}=\frac{n+4}{n+4}-\frac{7}{n+4}=1-\frac{7}{n+4}\)
Để \(\frac{n-3}{n+4}\in Z\) thì 7 chia hết cho n + 4
=> n + 4 thuộc Ư(7) = {-7;-11;7}
Ta có bảng :
n + 4 | -7 | -1 | 1 | 7 |
n | -11 | -5 | -3 | 3 |
\(A=\dfrac{6n-1}{2n+3}=\dfrac{3\left(2n+3\right)-10}{2n+3}\\ =3-\dfrac{10}{2n+3}\)
Để A nguyên thì: \(\dfrac{10}{2n+3}\) nguyên
\(\Rightarrow10⋮\left(2n+3\right)\)
\(\Rightarrow2n+3\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\\ \Rightarrow2n\in\left\{-2;-4;-1;-5;2;-8;7;-13\right\}\\ \Rightarrow n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};1;-4;\dfrac{7}{2};-\dfrac{13}{2}\right\}\)