\(\dfrac{3x^2-x+1}{3x+2}\) ( x khác \(\dfrac{-2}{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2018

Để A thuộc Z thì \(3x^2-x+1⋮3x+2\)

\(3x^2+2x-3x-2+3⋮3x+2\)

\(x\left(3x+2\right)-\left(3x+2\right)+3⋮3x+2\)

\(\left(3x+2\right)\left(x-1\right)+3⋮3x+2\)

\(\left(3x+2\right)\left(x-1\right)⋮3x+2\)

\(\Rightarrow3⋮3x+2\)

\(\Rightarrow3x+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng :

3x+2 1 -1 3 -3
x -1/3 -1 1/3 -5/3

Mà x thuộc Z => x = -1

Vậy x = -1

6 tháng 12 2018

\(A=\dfrac{3x^2+2x-3x+1}{3x+2}=\dfrac{3x^2+2x-3x-2+3}{3x+2}\)

\(A=\dfrac{x\left(3x+2\right)-\left(3x+2\right)+3}{3x+2}=x-1+\dfrac{3}{3x+2}\in Z\)

\(\Rightarrow3x+2\inƯ\left(3\right)\)

Xét ước thôi

16 tháng 10 2017

a) \(A=\left(\dfrac{1}{3}+\dfrac{3}{x^2-3x}\right):\left(\dfrac{x^2}{27-3x^2}+\dfrac{1}{x+3}\right)\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3\left(x^2-3x\right)}:\left(\dfrac{x^2}{3\left(9-x^2\right)}+\dfrac{1}{x+3}\right)\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\left(\dfrac{x^2}{3.\left(3-x\right).\left(3+x\right)}+\dfrac{1}{x+3}\right)\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\dfrac{x^2+3.\left(3-x\right)}{3.\left(3-x\right).\left(3+x\right)}\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}:\dfrac{x^2+9-3x}{3.\left(3-x\right).\left(3+x\right)}\)

\(\Rightarrow A=\dfrac{x^2-3x+9}{3x.\left(x-3\right)}.\dfrac{3.\left(3x-x\right).\left(3+x\right)}{x^2+9-3x}\)

\(\Rightarrow A=\dfrac{1}{x.\left(x-3\right)}.\left(-\left(x-3\right)\right).\left(3+x\right)\)

\(\Rightarrow A=\dfrac{1}{x}.\left(-1\right).\left(3+x\right)\)

\(\Rightarrow A=-\dfrac{1}{x}.\left(3+x\right)\)

a: Để A nguyên thì \(x-3\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{4;2;5;1\right\}\)

b: Để B nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{3;1;5;-1\right\}\)

c: Để C nguyên thì \(3x^2+2x-3x-2+3⋮3x+2\)

=>\(3x+2\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{-\dfrac{1}{3};-1;\dfrac{1}{3};-\dfrac{5}{3}\right\}\)

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

23 tháng 12 2018

\(A=\left(\dfrac{1}{x-1}+\dfrac{x}{x^3-1}.\dfrac{x^2+x+1}{x+1}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)

\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}.\dfrac{x^2+x+1}{x+1}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)

\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)

\(=\left(\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{x}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\dfrac{2x+1}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\dfrac{x+1}{x-1}\)

Vậy \(A=\dfrac{x+1}{x-1}\)

Giả sử tìm được \(x\in Z\) để \(A\in Z\)

\(x\in Z\Leftrightarrow\left\{{}\begin{matrix}x+1\in Z\\x-1\in Z\end{matrix}\right.\)

\(A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)

\(\Leftrightarrow2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)\)

Ta có các trường hợp :

+) \(x-1=1\Leftrightarrow x=2\)

+) \(x-1=2\Leftrightarrow x=3\)

+) \(x-1=-1\Leftrightarrow x=0\)

+) \(x-1=-2\Leftrightarrow x=-1\)

Vậy..

8 tháng 5 2018

a/ Để A ∈ Z

\(3x^2-9x+2\)\(x-3\)

\(3x\left(x-3\right)+2\)\(x-3\)

\(3x\left(x-3\right)\)\(x-3\)

\(2\)\(x-3\)

\(x-3\inƯ_{\left(2\right)}\)

\(x-3\in\left\{1;2;-1;-2\right\}\)

\(x\in\left\{4;5;2;1\right\}\)

Vậy ...

8 tháng 5 2018

b.

Ta có:

\(A=\dfrac{3n+9}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để A thuộc Z

=> \(\dfrac{21}{n-4}\in Z\) ( n khác 4)

=> \(21⋮\left(n-4\right)\)

\(\Rightarrow n-4\inƯ\left(21\right)=\left\{21;-21;7;-7;3;-3\right\}\)

\(\Rightarrow n\in\left\{25;-17;11;-3;-1;1\right\}\) ( nhận)

27 tháng 11 2017

a) \(A = \frac{2x^2 - 16x+43}{x^2-8x+22}\) = \(\frac{2(x^2-8x+22)-1}{x^2-8x+22}\) = \(2 - \frac{1}{x^2-8x+22}\)

Ta có : \(x^2-8x+22 \) = \(x^2-8x+16+6 = ( x-4)^2 +6 \)

\((x-4)^2 \ge 0 \) với \( \forall x\in R\) Nên \(( x-4)^2 +6 \ge 6 \)

\(\Rightarrow \) \(x^2-8x+22 \) \( \ge 6\)\(\Rightarrow \) \(\frac{1}{x^2-8x+22} \) \(\le \frac{1}{6}\) \(\Rightarrow \) - \(\frac{1}{x^2-8x+22} \) \(\ge - \frac{1}{6}\)

\(\Rightarrow \) A = \(2 - \frac{1}{x^2-8x+22}\) \( \ge 2-\frac{1}{6}\) = \(\frac{11}{6}\) Dấu "=" xảy ra khi và chỉ khi x=4

Vậy GTNN của A = \(\frac{11}{6}\) khi và chỉ khi x=4

14 tháng 6 2018

chỗ đó mk nhầm, sorry bn nha

Để F ∈ Z

\(\Leftrightarrow\dfrac{9}{x+3}\in Z\Leftrightarrow9⋮x+3\)

\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{1;-1;9;-9;3;-3\right\}\)

x+3 1 -1 3 -3 9 -9
x -2 -4 0 -6 6 -12

(t/m)

Vậy..............

a: \(A=\dfrac{2x-5+x^2-4+x^2-9}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2+2x-18}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x+6}{x-3}\)

b: Để A/2=x+3/x-3 là số nguyên thì \(x-3+6⋮x-3\)

=>\(x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{4;51;6;0;9;-3\right\}\)

c: Để A=1/x-1 thì \(\dfrac{2x+6}{x-3}=\dfrac{1}{x-1}\)

=>2x^2-2x+6x-6=x-3

=>2x^2+5x-6-x+3=0

=>2x^2+4x-3=0

hay \(x=\dfrac{-2\pm\sqrt{10}}{2}\)