Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A=\(\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\).CM A là một số tự nhiên chia hết cho 5
Ta có: 74n+1 = ...7 => 74n = ...1. Mà 2012 chia hết cho 4 => 20122015 chia hết cho 4 => 20122015 = 4n với n = x
=> 720122015 = ...1
Lại có: 34n+1 = ...3 => 34n = ...1. Mà 92 chia hết cho 4 => 9294 chia hết cho 4 => 9294 = 4n với n = y
=> 39294 = ...1
=> A = 1/2 [...1 - ...1]
=> A = 1/2. ...0 = ...0
Vậy A chia hết cho 5
Mà 720122015 - 39294 \(\ge\)0
=> 1/2[720122015 - 39294] \(\ge\)0
Vậy A là số tự nhiên
Từ đó suy ra A là số tự nhiên chia hết cho 5
AI THẤY ĐÚNG ỦNG HỘ NHÉ
CẢM ƠN MN
a) Theo bài ra, ta có:
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow\overline{ab}.100+\overline{bc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=\overline{ac}.7\)
Ta thấy : \(\frac{10}{90}\le\frac{\overline{bc}}{\overline{ab}}\le\frac{91}{10}\)
\(\Rightarrow100+\frac{10}{90}\le100+\frac{\overline{bc}}{\overline{ab}}\le100+\frac{91}{10}\)
\(\Rightarrow\frac{901}{9}\le100+\frac{\overline{bc}}{\overline{ab}}\le\frac{1091}{10}.\)
Ta thấy: \(\overline{ac}\in N\Rightarrow\overline{ac}.7\in N\)
Mà \(\overline{ac}.7⋮7\Rightarrow\overline{ac}.7=105\)
\(\Rightarrow\overline{ac}=105:7=15\Rightarrow a=1;c=5\)
\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=105\Rightarrow\frac{\overline{bc}}{\overline{ab}}=105-100=5\)
\(\Rightarrow\overline{bc}=5.\overline{ab}\Rightarrow b.10+c=50.a+5b\)
\(\Rightarrow5b+5=50\Rightarrow5b=50-5=45\)
\(\Rightarrow b=45:5=9.\)
Vậy \(a=1;b=9;c=5.\)
b) Theo bài ra, ta có:
\(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\)
Vì \(7>3;2012>92;2015>94\Rightarrow7^{2012^{2015}}>3^{92^{94}}\)
\(\Rightarrow7^{2012^{2015}}-3^{92^{94}}\)là một số tự nhiên.
\(2012\equiv0\left(mod4\right)\)
\(\Rightarrow2012^{2015}\equiv0\left(mod4\right)\)
\(\Rightarrow2012^{2015}=4m\left(m\in N\right)\)
\(\Rightarrow7^{2012^{2015}}=7^{4m}=\left(7^4\right)^m=\overline{...1}^m=\overline{...1}.\)
\(92\equiv0\left(mod4\right)\)
\(\Rightarrow92^{94}\equiv0\left(mod4\right)\)
\(\Rightarrow92^{94}=4n\left(n\in N\right)\)
\(\Rightarrow3^{92^{94}}=3^{4n}=\left(3^4\right)^n=\overline{...1}^n=\overline{...1}.\)
Thay vào, ta được :
\(A=\frac{1}{2}\left(\overline{...1}-\overline{...1}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\overline{...0}\right)\)
\(\overline{...0}\)là một số tự nhiên chia hết cho 10 \(\Rightarrow\)nó chia hết cho 2
\(\Rightarrow\)\(A\)là một số tự nhiên có chữ số tận cùng là 0 hoặc 5
\(\Rightarrow A⋮5.\)
Vậy A là một số tự nhiên chia hết cho 5.
\(\)
Bài 1)
Ta có:
A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
A < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
A < \(1-\dfrac{1}{8}\) = \(\dfrac{7}{8}\) < 1
Vậy A < 1
Bài 2)
Ta thấy:
\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\) \(\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(\Rightarrow\) \(\dfrac{2011+2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(\Rightarrow\) A < B
Bài 3)
Ta có:
B = \(\left(1-\dfrac{1}{1}\right)\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)
= \(0.\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)
= 0
Bài 3)
Ta có:
A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\)
\(\Rightarrow\) 2A = \(2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)
\(\Rightarrow\) 2A = \(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\)
\(\Rightarrow\) 2A - A = \(\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\right)\)-\(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)
\(\Rightarrow\) A = 2 - \(\dfrac{1}{2^{2012}}\) = \(\dfrac{2^{2013}-1}{2^{2012}}\)
Bài 5)
\(\pi\) + 5 \(⋮\) \(\pi\) - 2
\(\Leftrightarrow\) \(\pi\) - 2 + 7 \(⋮\) \(\pi\) - 2
\(\Leftrightarrow\) 7 \(⋮\) \(\pi\) - 2 (vì \(\pi\) - 2 \(⋮\) \(\pi\) - 2)
\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) Ư(7)
\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) \(\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow\) \(\pi\) \(\in\) \(\left\{1;3;-5;9\right\}\)
Lời giải:
Ký hiệu $\text{BSx}$ là bội số của số $x$
Ta thấy: \(2012\vdots 4\) nên có thể viết \(2012^{2015}=4k(k\in\mathbb{N}^*)\)
Khi đó: \(7^{2012^{2015}}=7^{4k}=2401^k=(2400+1)^k\)
\(=\text{BS2400}+1=\text{BS10}+1\)
\(92\vdots 4\) nên ta viết \(92^{94}\) dưới dạng \(4t(t\in\mathbb{N}^*)\)
Khi đó: \(3^{92^{94}}=3^{4t}=81^t=(80+1)^t\)
\(=\text{BS80}+1=\text{BS10}+1\)
Do đó: \(7^{2012^{2015}}-3^{92^{94}}=\text{BS10}+1-(\text{BS10}+1)=\text{BS10}\)
tức là \(7^{2012^{2015}}-3^{92^{94}}\vdots 10\Rightarrow A=\frac{1}{2}(7^{2012^{2015}}-3^{92^{94}})\vdots 5\)
Ta có đpcm