K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: góc EHC=90 độ-góc OHE

=90 độ-góc ODE

=(180 độ-2*góc ODE)/2

=góc DOE/2

=góc EHD

=>HC là phân giác của góc DHE

31 tháng 5 2017

Câu a:

Xét tam giác BOD và tam giác COD có

BD=CD (Hai tiếp tuyến cùng xp từ 1 điểm)

OD chung

OB=OC (bán kính (O))

=> tg BOD = tg COD (c.c.c) => ^DOC = ^DOB (1)

Gọi K là giao của OD với (O) ta có 

sđ ^BOD = sđ cung BK; sđ ^COD = sđ cung CK (2)

Từ (1) và (2) => sđ cung BK = sđ cung CK mà sđ cung BK + sđ cung CK = sđ cung BKC => sđ cung BK = sđ cung CK = 1/2 sđ cung BKC (3)

Ta có sđ ^BAC = 1/2 sđ cung BKC (góc nội tiếp) (4)

Từ (2) (3) (4) => ^BAC = ^DOC (dpcm)

Câu 2:

Ta có sđ ^DBC = 1/2 sđ cung BKC (góc giữa tiếp tuyến và dây cung)

sđ ^BAC = 1/2 sđ cung BKC

=> ^BAC = ^DBC (1)

AB//DF => ^BAC = ^DIC (góc đồng vị) (2)

Từ (1) và (2) => ^DBC = ^DIC => B và I cùng nhìn DC dưới hai góc băng nhau => B; D; C; I cùng nawmg trên 1 ffwowngf tròn => tứ giác BDCI nội tiếp

Câu 3:

Ta có

sđ ^COD = sđ cung CK = 1/2 sđ cung BKC (cmt)

sđ ^BAC = 1/2 sđ cung BKC

=> ^COD = ^BAC

mà ^BAC = ^DIC (cmt)

=> ^COD = ^DIC => O và I cùng nhìn CD dưới 2 góc bằng nhau => tứ giác CDOI nội tiếp (1)

Ta có sđ ^OCD = 90 = 1/2 sđ cung OD (góc nội tiếp), mà sđ ^OID = 1/2 sđ cung OD (góc nội tiếp) => ^OID = ^OCD = 90 => IO vuông góc EF => I thuộc đường tròn đường kính OD

Câu 4:

Ta có B; O; C cố định => D cố định => đường tròn đường kính OD cố định

Mà I thuộc đường tròn đường kính OD cố định

=> Khi A chuyển động trên cung BC thì I di chuyển trên đường tròn đường kính OD

26 tháng 5 2017

BAC là tam giác nhọn, DOC là vuông, bằng nhau = cách nào?

26 tháng 5 2017

bạn cố gắng là bạn làm được

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
20 tháng 1 2020

ÔNG CHOI MOPE.IO dúng ko tui gap ong nek

21 tháng 1 2020

MOPE.IO là cái l gì thế