\(a, b\in Z\), \(b>0\) so sánh 2 số hữu tỉ

<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

Ta có: 

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+2018}{b+2018}=\frac{b-a}{b+2018}\)

Do b+2018>b => \(\frac{b-a}{b}>\frac{b-a}{b+2018}\Rightarrow1-\frac{a}{b}>1-\frac{a+2018}{b+2018}\)\(\Rightarrow\frac{a}{b}< \frac{a+2018}{b+2018}\)

20 tháng 5 2019

Ta có:\(\frac{a}{a'}+\frac{b'}{b}=1\)

\(\Rightarrow ab+a'b'=a'b\)

\(\Rightarrow abc+a'b'c=a'bc\left(1\right)\)

Lại có:\(\frac{b}{b'}+\frac{c'}{c}=1\)

\(\Rightarrow bc+b'c'=b'c\)

\(\Rightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)

Cộng vế theo vế của (1) và (2) ta được:

\(abc+a'b'c'=0\)

24 tháng 8 2020

\(B=\frac{1}{1.1.3}+\frac{1}{2.3.5}+\frac{1}{3.5.7}+\frac{1}{4.7.9}+...+\frac{1}{100.199.201}\)

\(\frac{1}{1.1.3}+\frac{2}{2.3.5}+\frac{3}{3.5.7}+\frac{4}{4.7.9}+...+\frac{100}{100.199.201}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{199.201}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{199.201}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{199}-\frac{1}{201}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{201}\right)=\frac{1}{2}.\frac{200}{201}=\frac{100}{201}< \frac{1}{2}< \frac{2}{3}\)

=> B < 2/3

28 tháng 12 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{1}+\frac{1}{2}+....+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)

\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}\)

\(\frac{A}{B}=\frac{\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}=\frac{1}{2011}\)

đế sai??? B\A mới thuộc Z chứ??? còn cách làm vẫn vậy.nếu B/A thì =2011 nhé =)

20 tháng 1 2020

tôi có nik tuyensinh247

ai muốn có ko ?

2 khóa học : tiếng anh ; toán tôi bán lại chỉ có 100.000đ thui (1nik) trước đây tôi mua 2 khóa học mất 1.200.000 đ

10 khóa học :ngữ văn,sinh,toán,lý,anh,đề thi văn,anh,toán ,lý,sinh tôi bán lại chỉ có 500.000đ trươcqs đây tôi mua hơn 3.000.000đ (1nik)

ai muốn mua nhanh tay

7 tháng 10 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)

Khi đó:

\(\dfrac{a-b}{a}=\dfrac{bt-b}{bt}=\dfrac{b\left(t-1\right)}{bt}=\dfrac{t-1}{t}\)

\(\dfrac{c-d}{c}=\dfrac{dt-d}{dt}=\dfrac{d\left(t-1\right)}{dt}=\dfrac{t-1}{t}\)

Ta có điều phải chứng minh

18 tháng 1 2019

\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)

\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)

\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất

Mà \(\left|2018x-2019\right|\ge0\)

\(\Rightarrow\left|2018x-2019\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left|2018x-2019\right|=0\)

\(\Leftrightarrow x=\frac{2019}{2018}\)

Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)

18 tháng 1 2019

\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)

\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)

\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)

\(\Rightarrow5^x=3^{2x}\)

Mà \(\left(5;3\right)=1\)

\(\Rightarrow x=2x=0\)

17 tháng 11 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)