Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2=1\Rightarrow-1\le a;b;c\le1\text{ ta có:}\)
\(a^2-a^3+b^2-b^3+c^2-c^3=a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\Rightarrow\text{ 1 số bằng 1; 2 số bằng 1}\)
do đó:a+b2+c3=1
\(\hept{\begin{cases}a^2+b^2+c^2=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}}\)
Ta có: ( 1) => \(a^2\le1;b^2\le1;c^2\le1\) => \(-1\le a\le1;-1\le b\le1;-1\le c\le1\)
=> \(\left(a-1\right)\le0;\left(b-1\right)\le0;\left(c-1\right)\le0\)
<=> \(a^2\left(a-1\right)\le0;b^2\left(b-1\right)\le0;c^2\left(c-1\right)\le0\)
Lấy (2) - (1) ta có: \(a^3-a^2+b^3-b^2+c^3-c^2=0\)
<=> \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)(1)
TH1) Tồn tại ít nhất 1 số trong 3 số: \(a^2\left(a-1\right);b^2\left(b-1\right);c^2\left(c-1\right)< 0\)
=> vô lí
Th2) Cả 3 số bằng 0
(1) <=> \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)
Mặt khác \(a^2+b^2+c^2=1\)
Do đó chỉ có các nghiệm: ( 1; 0; 0) hoặc (0; 0; 1) hoặc ( 0; 1; 0 ) thỏa mãn
Vậy tổng a + b^2 + b^3 = 1
Ta có: \(\frac{a^4}{c}+\frac{b^4}{d}\ge\frac{\left(a^2+b^2\right)^2}{c+d}=\frac{1}{c+d}\)
Dấu = xảy ra khi \(\frac{a^2}{c}=\frac{b^2}{d}\)
Do đó: \(VT=\frac{a^2}{c}+\frac{b}{d^2}=\frac{d^2}{b}+\frac{b}{d^2}\ge2\sqrt{\frac{d^2}{b}.\frac{b}{d^2}}=2\)
\(\hept{\begin{cases}a+b+c+d=7\\a^2+b^2+c^2+d^2=13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+c+d=7-a\left(1\right)\\b^2+c^2+d^2=13-a^2\left(2\right)\end{cases}}\)
Ta có:
\(\left(b+c+d\right)^2=b^2+c^2+d^2+2\left(bc+cd+db\right)\)
\(\le b^2+c^2+d^2+\left(b^2+c^2\right)+\left(c^2+d^2\right)+\left(d^2+b^2\right)=3\left(b^2+c^2+d^2\right)\)
\(\Rightarrow\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\left(3\right)\)
Thế (1), (2) vào (3) ta được
\(\left(7-a\right)^2\le3\left(13-a^2\right)\)
\(\Leftrightarrow2a^2-7a+5\le0\)
\(\Leftrightarrow1\le a\le\frac{5}{2}\)
\(\Rightarrow\hept{\begin{cases}min\left(a\right)=1\\max\left(a\right)=\frac{5}{2}\end{cases}}\)
\(\Rightarrow\frac{min\left(a\right)+max\left(a\right)}{2}=\frac{1+\frac{5}{2}}{2}=\frac{7}{4}\)
Ta có : a + b + c = 3 - d
Theo bđt Bunhiacopxki : \(\left(3-d\right)^2=\left(a+b+c\right)^2=\left(1.a+1.b+1.c\right)^2\le\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\left(3-d\right)^2\le3\left(a^2+b^2+c^2\right)\)hay \(\left(3-d\right)^2\le3\left(3-d^2\right)\)(1)
Giải (1) :
\(d^2-6d+9\le-3d^2+9\Leftrightarrow4d^2-6d\le0\Leftrightarrow d\left(2d-3\right)\le0\)
TH1 : \(\begin{cases}d\le0\\2d-3\ge0\end{cases}\)\(\Leftrightarrow\left[\begin{array}{nghiempt}d\ge\frac{3}{2}\\d\le0\end{array}\right.\)
TH2 : \(\begin{cases}d\ge0\\2d-3\le0\end{cases}\)\(\Leftrightarrow0\le d\le\frac{3}{2}\)
So sánh hai trường hợp, ta được d đạt giá trị lớn nhất bằng \(\frac{3}{2}\) . Khi đó ta có : \(\begin{cases}a+b+c=\frac{3}{2}\\a^2+b^2+c^2=\frac{3}{4}\end{cases}\)\(\Leftrightarrow a=b=c=\frac{1}{2}\)
Vậy a = b = c = \(\frac{1}{2}\) thì d đạt giá trị lớn nhất bằng \(\frac{3}{2}\)