Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=a^2 + a^3 -b^2 +b^3 -a^2b^2(a+b)
=(a^2-b^2) + (a^3+b^3) -a^2b^2(a+b)
=(a-b)(a+b) + (a+b)(a^2-ab+b^2) - a^2b^2(a+b)
=(a+b)(a-b+a^2-ab+b^2-a^2b^2)
=(a+b) ( (a-ab) -(b-b^2) +a^2(1-b^2) )
=(a+b) ( a(1-b) - b(1-b) + a^2(1-b)(1+b) )
=(a+b) (1-b)(a-b+a^2+a^2b)
2/\(ĐKXĐ:x\ne-1\)
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{2\left(x+1\right)^2-4\left(x+1\right)+4}{\left(x+1\right)^2}\)
\(=2-\frac{4}{x+1}+\frac{4}{\left(x+1\right)^2}\)
Đặt \(\frac{2}{x+1}=t\)
\(\Rightarrow Q=t^2-2t+2=\left(t-1\right)^2+1\ge1\forall t\)
\(\Rightarrow minQ=1\Leftrightarrow t=1\)
\(\Leftrightarrow\frac{2}{x+1}=1\)
\(\Leftrightarrow x=1\left(tmđkxđ\right)\)
Ta có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)
=> \(A\le\frac{2019}{2.2+2016}=\frac{2019}{2020}\)
Dấu "=" xảy ra <=> a = b = 1
\(M=a+\frac{\left(2a+b\right)\left(2+b\right)-\left(2a-b\right)\left(2-b\right)}{4-b^2}-\frac{4a}{4-b^2}.\)
\(=a+\frac{4b\left(a+1\right)-4a}{4-b^2}\)
Ta có \(4ab+4b-4a=4\left[\frac{a^2}{a+1}+\frac{a}{a+1}-4a\right]=-12a\)
\(4-b^2=4-\frac{a^2}{\left(a+1\right)^2}=\frac{4\left(a^2+2a+1\right)-a^2}{\left(a+1\right)^2}=\frac{3a^2+8a+4}{\left(a+1\right)^2}\)
\(\Rightarrow M=a+\frac{-12a\left(a+1\right)^2}{3a^2+8a+4}\)
\(=-\frac{9a^3+16a^2+8a}{3a^2+8a+4}\)
\(M=a+\frac{2a+b}{2-b}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)
\(=a-\frac{2a+b}{b-2}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)
\(=a-\frac{\left(2a+b\right)\left(2+b\right)+\left(2a-b\right)\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}+\frac{4a}{b^2-4}\)
\(=a-\frac{4b\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a-\frac{4\frac{a}{a+1}\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a-\frac{4a}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a\)
2a^2 +2b^2 -5ab = 0
2a^2 -4ab -ab +2b^2 = 0
2a(a-2b) -b(a-2b) = 0
(2a-b)(a-2b) = 0
Suy ra: 2a=b hoặc a=2b
Mà a>b>0 nên a=2b
Ta có: P = a+b/a-b = 2b+b/ 2b-b = 3b/b=3
Vậy P = 3
Chúc bạn học tốt.
Ta có: \(2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2+2b^2-5ab=0\)
\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-2b=0\\2a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=2b\\2a=b\end{cases}}}\)
Mà a > b > 0 nên a = 2b
Thế vào, ta được: \(P=\frac{a+b}{a-b}=\frac{2b+b}{2b-b}=\frac{3b}{b}=3\)
Vậy P = 3
Ta có
(a – b)(a + 2b) – (b – a)(2a – b) – (a – b)(a + 3b)
= (a – b)(a + 2b) + (a – b)(2a – b) – (a – b)(a + 3b)
= (a – b)(a + 2b + 2a – b – (a + 3b))
= (a – b)(3a + b – a – 3b) = (a – b)(2a – 2b)
Vậy khi đặt nhân tử chung (a – b) ra ngoài ta được biểu thức còn lại là 2a – 2b.
Đáp án cần chọn là : A