Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b⋮6\)
\(12b⋮6\)
Do đó: \(a-b-12b⋮6\)
hay \(a-13b⋮6\)
\(a-b⋮6\\ \Rightarrow5a-5b⋮6\\ \)
Ta có :
\(\left(5a-5b\right)+\left(a+5b\right)=5a-5b+a+5b=6a⋮6\\ \Rightarrow a+5b⋮6\left(\text{đ}pcm\right)\)
Áp dụng công thức sau :
a chia hết m ; a+b chia hết m
=> b chia hết m
Chúc bạn học tốt !!!!
Vì a - b ⋮ 6 nên a và b cùng chia hết cho 6
Ta có \(a+5b=a+\left(6b-b\right)\)\(=a+6b-b\)
Vì b ⋮ 6 nên 6b ⋮ 6
\(\Rightarrow a+6b-b⋮6\Rightarrow a+5b⋮6\)
Điều phải chứng minh
a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
b) b = a - c => b + c = a
\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)
Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)
\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\)
\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(b+6\right)\left(a-5\right)\)
\(\Leftrightarrow ab-6a+5b-30=ab-5b+6a-30\)
\(\Leftrightarrow-6a+5b=6a-5b\)
\(\Leftrightarrow5b+5b=6a+6a\)
\(\Leftrightarrow10b=12a\)
\(\Leftrightarrow\frac{a}{b}=\frac{10}{12}=\frac{5}{6}\)
A=2X2^2012+2^2X2^2012+2X2^2014+2^2X2^2014+2X2^2016+2^2X2^2016 A=2^2012X(2+2^2)+2^2014X(2+2+2^2)+2^20116X(2+2^2) A=2^2012X6+2^2014X6+2^2016X6 A=6X(2^2012+2^2014+2016) Vì 6x(2^2012+2^2014+2^20160 chia hết cho 6 suy ra A chia hết cho 6. Vì A chia hết cho 6 nên A là bội của 6 CHÚC HỌC TỐT
\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)
\(\Rightarrow4\left(3a+2b\right)⋮17\)
\(\Rightarrow12a+8b⋮17\)
\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)
\(\text{#Not_chắv_:)}\)
a. Ta có :
2(10a + b) - (3a+2b)
= 20a+2b-3a-2b
= 17a
Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17
=> 2( 10a+b) - (3a+2b) \(\vdots\) 17
Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17
Mà (2,17)=1 => 10a+b \(\vdots\) 17
Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17
b. Câu b cx tương tự nha