Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(a+\frac{1}{b\left(a-b\right)^2}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)^2}=\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\)
Áp dụng BĐT Cosi cho 4 số ta có:
\(\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\ge4\sqrt[4]{\frac{a-b}{2}\cdot\frac{a-b}{2}\cdot b\cdot\frac{1}{b\left(a-b\right)^2}}\)
\(=4\cdot\sqrt[4]{\frac{1}{4}}=1\cdot\frac{\sqrt{1}}{2}=2\sqrt{2}\)
\(\Rightarrow a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)
Dấu "=" xảy ra khi \(\frac{a-b}{2}=b\)
\(\Leftrightarrow\frac{a}{2}=\frac{3b}{2}\Leftrightarrow a=3b\)
Cách giải: Linh Vy. Trình bày: Nhật Quỳnh
e)\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(=1+\frac{b}{a}+\frac{a}{b}+1\)
\(=\left(1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)
\(=2+\left(\frac{a.a}{b.a}+\frac{b.b}{a.b}\right)\)
\(=2+\frac{a.a+b.b}{b.a}\)
Vì \(\frac{a.a+b.b}{a.b}>=2\)
Nên \(2+\frac{a.a+b.b}{a.b}>=2+2=4\)
Hay \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)>=4\)
a) \(a^2+b^2-2ab\)
\(=\left(a-b\right)^2\)
Vì \(\left(a-b\right)^2\) là binh phương của một số nên \(\left(a-b\right)^2>=0\)
Hay \(a^2+b^2-2ab>=0\)
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có:
\(\left(a+b+c\right)\left[\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\)
\(\ge\left(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\) \(\left(1\right)\)
Lại có: \(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ac+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\) ( Do abc=1 )
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=1\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\left(a+b+c\right)\left[\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\ge1\)
Mà \(a;b;c>0\Rightarrow a+b+c>0\)
\(\Rightarrow\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\) (đpcm)
17) \(\frac{10x^2-7x-5}{2x-3}\) là số nguyên khi 10x² - 7x - 5 \(⋮\) 2x - 3
Ta có: 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
\(\Rightarrow\) 10x² - 7x - 5 \(⋮\) 2x - 3 khi và chỉ khi 7 chia hết cho 2x-3
\(\Rightarrow\) 2x - 3 \(\in\) Ư(7) \(\Leftrightarrow\) 2x - 3 = \(\left\{-1;1;-7;7\right\}\)
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là \(\left\{-2;1;2;5\right\}\)
23) Cm rằng
a) a2+b2−2ab ≥0
Ta có: a2+b2−2ab = a2−2ab+b2 = (a - b)2 ≥ 0 (đpcm)
b)\(\frac{a^2+b^2}{2}\) ≥ ab
Ta có: (a-b)2 ≥0 vs mọi a,b
\(\Leftrightarrow\) a2−2ab+b2 ≥0
\(\Leftrightarrow\) a2+b2 ≥ 2ab
\(\Leftrightarrow\) \(\frac{a^2+b^2}{2}\) ≥ ab (đpcm)
c) a(a+2)<(a+1)2
Ta có: a(a+2)= a2+2a
(a+1)2 = a2 + 2a + 1
\(\Rightarrow\) a(a+2)<(a+1)2 (đpcm)
d) m2+n2+2 ≥ 2(m+n)
Ta có: (m-n)2 \(\ge\) 0
\(\Leftrightarrow\) m2- 2mn+n2 \(\ge\) 0
\(\Leftrightarrow\) m2+n2 \(\ge\) 2mn
\(\Leftrightarrow\) m2+n2+2 \(\ge\) 2mn+2
\(\Leftrightarrow\) m2+n2+2 ≥ 2(m+n) (đpcm)
e) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (với a>0, b>0)
Ta có: (a - b)2 ≥ 0
\(\Leftrightarrow\) a2−2ab+b2 ≥ 0
\(\Leftrightarrow\) a2+2ab - 4ab+b2 ≥ 0
\(\Leftrightarrow\) (a + b)2 - 4ab≥ 0
\(\Leftrightarrow\) (a + b)2 ≥ 4ab
\(\Leftrightarrow\) \(\frac{\left(a+b\right)^2}{ab}\) ≥ 4
\(\Leftrightarrow\) (a+b) ( \(\frac{a+b}{ab}\) ) ≥ 4
\(\Leftrightarrow\) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (vs a,b > 0) (đpcm)
Đặt \(x=\frac{a}{b}+\frac{b}{a}\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=x^2-2\)
Xét mẫu thức : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)=x^2-x-2=\left(x+1\right)\left(x-2\right)\)
Thay \(x=\frac{a}{b}+\frac{b}{a}\) được mẫu thức : \(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)=\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}\)
Ta có : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{a^2b^2}}{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}}\)
\(=\frac{\left(a-b\right)^2}{a^2b^2}.\frac{ab}{\left(a-b\right)^2}=\frac{1}{ab}\) (đpcm)
b) Áp dụng bđt Cauchy :
\(1=4a+b+\sqrt{ab}\ge2\sqrt{4a.b}+\sqrt{ab}\)
\(\Rightarrow5\sqrt{ab}\le1\Rightarrow ab\le\frac{1}{25}\)
\(\Rightarrow P=\frac{1}{ab}\ge25\) . Dấu "=" xảy ra khi \(\begin{cases}4a+b+\sqrt{ab}=1\\4a=b\end{cases}\)
\(\Leftrightarrow\begin{cases}a=\frac{1}{10}\\b=\frac{2}{5}\end{cases}\)
Vậy P đạt giá trị nhỏ nhất bằng 25 tại \(\left(a;b\right)=\left(\frac{1}{10};\frac{2}{5}\right)\)
pn ơi , bđt cauchy : \(a+b\ge2\sqrt{ab}\)
s lại là \(2\sqrt{4a.b}+\sqrt{ab}\)
\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge2\)
\(\Leftrightarrow a^2+2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+2\ge2\)
<=> Sai đề