\(\frac{1}{ab}+\frac{1}{a^2+b^2}\ge6\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

a) đề thiếu òi bạn à            

18 tháng 9 2016

\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

Ta có : \(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}=4\)

\(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}=2\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{a^2+b^2}\ge4+2=6\)

16 tháng 4 2018

Cách 1:(nếu đã học BĐT Bunhia)=>Áp dụng BĐT Bunbiacopxki ta có:

\(\frac{1^2}{a^2+2bc}+\frac{1^2}{b^2+2ac}+\frac{1^2}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{3^2}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Cách 2:chưa học BĐT ...

Với a,b,c>0 thì \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)(tự chứng minh)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Áp dụng ta có:\(BĐT\ge\frac{9}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge9\)

31 tháng 3 2019

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

31 tháng 3 2019

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.

16 tháng 12 2018

\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)

\(\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}+\frac{4}{\left(a+b\right)^2}=\frac{2}{1}+\frac{4}{1}=6\)

17 tháng 11 2017

chịu??? tớ chưa học đến?

10 tháng 4 2019

Ê,

Why?

bạn ý cũng đưa câu hỏi lên thui mà