Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Ta có: \(x^2=1\)
=>x=1 hoặc x=-1
=>x là số hữu tỉ
Bài 1:
Ta có:
\(\dfrac{a}{b}>\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a.d}{b.d}>\dfrac{b.c}{b.d}\left(b;d>0\right)\)
\(\Leftrightarrow ad>bc\)
Vậy ...
Bài 2:
Ta có:
\(0< a< 5< b\)
\(\Leftrightarrow a;b>0\)
\(\Leftrightarrow\dfrac{b}{a}>0\)
Mà \(a< 5< b\)
\(\Leftrightarrow a< b\)
\(\Leftrightarrow\dfrac{b}{a}>1\)
Vậy ...
1
a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\)
2
b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)
Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\) và \(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)
1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc
1b ) Như trên
2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)
\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa là.................
a)Ta có: ad-bc=1 => ad>bc=>\(\dfrac{a}{b}\)>\(\dfrac{c}{d}\)=>x>y (*)
Ta có: cn-dm=1=>cn > dm=> \(\dfrac{c}{d}\)>\(\dfrac{m}{n}\)=> y>z(**)
Từ (*) và (**) ta có: \(\dfrac{m}{n}\)< \(\dfrac{c}{d}\)<\(\dfrac{a}{b}\)
hay z<y<x
b) Ta có: ad-bc=1=> ad=bc+1
cn-dm=1=> cn=dm+1
Ta lại có: cb+dm+1=cb+1+dm
hay cb+cn=ad+dm
=> c(b+n)=d(a+m)
=> \(\dfrac{c}{d}\)=\(\dfrac{a+m}{b+n}\)
Vậy y = t
Bạn quy đồng lên rồi dựa vào giả thiết là có thể làm được thôi!!
Dễ mà~~
a) Ta có: \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\)(b > 0, d > 0)
Nếu \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) (b > 0, d > 0) thì ad = bc.
=> Nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì ad < bc.
Vậy nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì ad < bc.
a) Ta có: \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
=> \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\)
=> ad < bc
Vậy ad < bc
b) Ta có: ad < bc
=> \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
Vậy \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
+) Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)
+) Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow\dfrac{a}{b}=\dfrac{a+n}{b+n}\)
+) Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\)
\(a>b\)
\(\Rightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+n}{b+n}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)
\(a< b\)
\(\Rightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\)
\(a=b\)
\(\Rightarrow\dfrac{a}{b}=1\Rightarrow\dfrac{a+n}{b+n}=1\Rightarrow\dfrac{a}{b}=\dfrac{a+n}{b+n}\)
Chúc bạn học tốt!
1) Nếu a/b>1 thì a/b>b/b<=>a>b
2)Nếu a>b thì a.z>b.z=>a/b>z/z<=>a/b>1
3)Nếu a/b<1 thì a/b<b/b<=>a<b
4)Nếu a<b=>a.z<b.z=>a/b<z/z<=>a/b<1