![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(a< b\Leftrightarrow a+c< b+c\) (1)
Lại có: \(c< d\Leftrightarrow b+c< b+d\) (2)
Từ (1),(2) suy ra:
\(a+c< b+d\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a<b; c<d
=>a+c(hai số nhỏ hơn)<b+d(hai số lớn hơn)
có vậy thôi
vìtổng của hai số nhỏ hơn vẫn chỉ nhỏ hơn tổng hai số lớn
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc
b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
CM:$(b+c)(\frac{1}{b}+\frac{1}{c})< \frac{(a+d)^{2}}{ad}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\left(1-a\right)\left(1-b\right)=1-a-b+ab\)
-Vì \(a>0;b>0\) nên ab > 0
Suy ra: \(\left(1-a\right)\left(1-b\right)>1-a-b\) (*)
-Vì c < 1 nên 1-c > 0
Tương tự (*) => \(\left(1-a\right)\left(1-b\right)\left(1-c\right)>1-a-b-c\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)>\left(1-a-b-c\right)\left(1-d\right)\)
\(d< 1\Rightarrow d-1>0\)
Vậy \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)>1-a-b-c-d\)
=> (đpcm)
Đặt \(A=\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)\)
\(A=\left(1-a-b+ab\right)\left(1-c-d+cd\right)\)
\(A=1-c-d+cd-a+ac+ad-acd-b+bd-bcd+ab-abc-abd+abcd+bc\)
\(A=1-a-b-c-d+cd\left(1-a\right)+ac\left(1-b\right)+bc\left(1-d\right)+bd\left(1-c\right)+abcd\)
Có: 0<a,b,c,d<1
=> \(cd\left(1-a\right)>0;ac\left(1-b\right)>0;bc\left(1-d\right)>0;bd\left(1-c\right)>0;abcd>0\)
\(\Rightarrow A>A-cd\left(1-a\right)-ac\left(1-b\right)-bc\left(1-d\right)-bd\left(1-c\right)-abcd=1-a-b-c-d\)
đpcm
Ta có: a < b ⇒ a + c < b + c (1)
c < d ⇒ b + c < b + d (2)
Từ (1) và (2) suy ra: a + c < b + d.