Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
Ta có : ( 2a + 7b ) + ( 4a + 2b ) = 6a + 9b
=> ( 6a + 9b ) - ( 2a + 7b ) = 4a + 2b
Mà 6a + 9b và 2a + 7b chia hết cho 3 nên 4a + 2b chia hết cho 3
Bài 1:
a/ 5a + 8b = 6a - a + 6b + 2b = 6(a+b) + ( - a + 2b) chia hết cho 3 mà 6(a + b) chia hết cho 3 => - a + 2b chia hết cho 3
b/ 5a + 8b chia hết cho 3 => 2(5a + 8b) = 10a + 16b = 10a + b + 15b chia hết cho 3 mà 15b chia hết cho 3 => 10a + b chia hết cho 3
c/ 5a + 8b chia hết cho 3 => 2(5a + 8b) = 10a + 16b =9a + a + 16b chia hết cho 3 mà 9a chia hết cho 3 => 16b + a chia hết cho 3
CMR là gì vạy bạn mình ko biết
CMR là chứng minh rằng đó