K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

\(a^2+b^2=a+b+ab\Leftrightarrow a+b=a^2+b^2-ab\)

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[-\left(a+b\right)\right]=-\left(a+b\right)^2\le0\)

Dấu "=" xảy ra khi (a+b)2=0 <=> a+b=0

<=> \(a^2+b^2-ab=0\Leftrightarrow\left(a+b\right)^2-3ab=0^2-3ab=-3ab=0\Leftrightarrow ab=0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

mà a+b=0 => a=b=0

4 tháng 6 2019

#)Giải :

Ta có : \(P=a^4+b^4+2-2-ab\)

Áp dụng BĐT cô si, ta có : 

\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1

\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1

Khi đó \(P\ge2a^2+2b^2-2-ab\)

           \(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)

           \(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)

Mặt khác \(a^2+b^2\ge2ab\)

Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)

\(\Rightarrow ab\le1\)(2)

Từ (1) và (2)

Ta có : \(P\ge4-3ab\ge4-3=1\)

Vậy P đạt GTNN là 1 khi a = b = 1

                #~Will~be~Pens~#

16 tháng 8 2016

Giả thiết là \(a,b\ge0\)thì chuẩn hơn.

\(\left(a+b\right)^2=a^2+b^2+2ab=1+2ab\ge1\text{ }\Rightarrow\text{ }a+b\ge1\)

Dấu bằng xảy ra khi \(2ab=0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow\text{ }\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Rightarrow\left(a+b\right)^2\le2\Rightarrow a+b\le\sqrt{2}\)

Dấu bằng xảy ra khi \(a-b=0\Leftrightarrow a=b\)

\(P=\sqrt{1+2a}+\sqrt{1+2b}\)

Max: Áp dụng bđt đã sử dụng ở trên: \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)

\(P^2\le2\left(1+2a+1+2b\right)=4\left(a+b\right)+4\le4\sqrt{2}+4\)

\(\Rightarrow P\le\sqrt{4+4\sqrt{2}}=2\sqrt{1+\sqrt{2}}\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

Min: Dùng bđt \(\sqrt{1+x}+\sqrt{1+y}\ge1+\sqrt{1+x+y}\text{ (1)}\left(x;\text{ }y\ge0\right)\)

\(\left(1\right)\Leftrightarrow1+x+1+y+2\sqrt{1+x}\sqrt{1+y}\ge1+1+x+y+2\sqrt{x+y+1}\)

\(\Leftrightarrow\sqrt{1+x}\sqrt{1+y}\ge\sqrt{1+x+y}\)

\(\Leftrightarrow xy+x+y+1\ge x+y+1\)

\(\Leftrightarrow xy\ge0\)

Do bđt cuối dúng với mọi \(x,y\ge0\) nên (1) đúng.

Dấu bằng xảy ra khi \(xy=0\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

\(P\ge1+\sqrt{1+2\left(a+b\right)}\ge1+\sqrt{1+2}=1+\sqrt{3}\)

Dấu bằng xảy ra khi \(\orbr{\begin{cases}a=0;\text{ }b=1\\a=1;\text{ }b=0\end{cases}}\)

23 tháng 6 2017

Từ \(a^2+b^2=4\Rightarrow\left(a+b\right)^2-2ab=4\Rightarrow2ab=\left(a+b\right)^2-4\)

Ta có: \(2A=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

\(\le\sqrt{2\left(a^2+b^2\right)}-2=2\sqrt{2}-2\)

\(\Rightarrow2M\le2\sqrt{2}-2\Rightarrow M\le\sqrt{2}-1\)

Đẳng thức xảy ra khi \(a=b=\sqrt{2}\)

18 tháng 9 2016

Ta có a2 + b = 4 <=> 2ab = (a + b)2 - 4

Ta có \(\frac{ab+a+b+2}{a+b+2}=1+\frac{ab}{a+b+2}\)

\(1+\frac{\left(a+b\right)^2-4}{2\left(a+b+2\right)}\)

\(1+\frac{a+b-2}{2}\)(1)

Mà \(\frac{\left(a+b\right)^2}{2}\le a^2+b^2=4\)

<=> a + b \(\le\)\(2\sqrt{2}\)

Từ đó <=> (1) \(\le\)\(\sqrt{2}\)

Từ đó => P \(\sqrt[4030]{2}\)

Đạt được khi a = b = \(\sqrt{2}\)

3 tháng 1 2017

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

2 tháng 1 2017

chẵng biết