K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

+ Nếu a < b thì a + b < b + b

=> a + b < 2.b < a.b (vì a > 2)

+ Nếu a = b thì a + b = b + b

=> a + b = 2.b < a.b (vì a > 2)

+ Nếu b > a thì a + b < b + b

=> a + b < 2.b < a.b (vì a > 2)

Vậy với a > 2; b > 2 thì a + b < a.b (đpcm)

11 tháng 9 2016

Nếu muốn a.b < a + b thì a b nhân nhau phải có a hoặc b bằng 1:

a. 1 = a, b. 1 = b

Nhưng a > 2, b > 2.

Nên không có trường hợp 1 nêu trên xảy ra.

Vậy:

=> a + b < a.b nếu a > 2 ; b > 2

3 tháng 7 2015

vì a>2, b>2 => \(2-a0\Rightarrow\left(2-a\right)\left(b-2\right)

5 tháng 2 2020

\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)

  \(\Rightarrow4\left(3a+2b\right)⋮17\)

\(\Rightarrow12a+8b⋮17\)

\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)

\(\Rightarrow10a+b⋮17\)

\(\text{#Not_chắv_:)}\)

5 tháng 2 2020

a. Ta có :

    2(10a + b) - (3a+2b)

= 20a+2b-3a-2b

= 17a

Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17

                => 2( 10a+b) - (3a+2b) \(\vdots\) 17

Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17

 Mà (2,17)=1 => 10a+b \(\vdots\) 17

Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17

b. Câu b cx tương tự nha

15 tháng 12 2021

b) a(a+1)(a+2)

+) Giả sử a là số lẻ

=> a+1 là số chẵn và chia hết cho 2 => a(a+1)(a+2) chia hết cho 2

+) Giả sử a là số chẵn

=> a chia hết cho 2 => a(a+1)(a+2) chia hết cho 2

Vậy a(a+1)(a+2) chia hết cho 2 với mọi a thuộc N     (1)

+) Giả sử a không chia hết cho 3 nên a chia 3 dư 1 hoặc dư 2

Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3

Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3

Vậy a(a+1)(a+2) chia hết cho 3 với mọi a thuộc N       (2)

Từ (1) và (2) => a(a+1)(a+2) chia hết cho  2 và 3 với mọi a thuộc N

_HT_

15 tháng 12 2021

a) 1980a - 1995b

Ta có: 1980a luôn có chữ số tận cùng là 0 vì 0 nhân với số nào cũng đều có chữ số tận cùng là 0

 1995b sẽ có chữ số tận cùng là 0 nếu b là số chẵn và ngược lại, 1995b sẽ có chữ số tận cùng là 5 nếu b là số lẻ

Từ đó => 1980a-1995b có tận cùng là : 0-5 = 5 hoặc 0-0= 0

Mà số có chữ số tận cùng là 0 hoặc 5 thì đều chia hết cho 5

Vậy 1980a-1995b chia hết cho 5 với mọi a,b thuộc N     (1)

Ta có:  1980 chia hết cho 3 => 1980a cũng chia hết cho 3 với mọi a

             1995 chia hết cho 3 => 1995b cũng chia hết cho 3 với mọi b

Vậy 1980a-1995b chia hết cho 3 với mọi a,b thuộc N      (2)

Từ (1) và (2) => 1980a-1995b chia hết cho 3 và 5 với mọi a,b thuộc N

=> ĐPCM

_HT_

Số nhỏ nhất lớn hơn 2 là : 3

Tích của 3 x 3 là : 3 x 3 = 9

Tổng của 3 + 3 là : 3 + 3 = 6

Vậy, a + b bao giờ cũng nhỏ hơn a x b

6 tháng 9 2017

\(a>2\Rightarrow a-2>0\)

\(b>2\Rightarrow b-2>0\)

\(\Rightarrow\left(a-2\right)\left(b-2\right)>0\Leftrightarrow ab-2a-2b+4>0\)

\(\Leftrightarrow ab+4>2\left(a+b\right)\)

Ta có : \(a.b>2.2=4\Rightarrow ab+ab>ab+4>2\left(a+b\right)\)

\(\Rightarrow2ab>2\left(a+b\right)\)

\(\Rightarrow ab>a+b\)

22 tháng 11 2021

sssssssssssss

5 tháng 1 2017

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60