K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

 \(VT-VP=\frac{\left[2\left(a-1\right)+\left(2-b\right)\right]\left(3-\left(a-1\right)-2\left(2-b\right)\right)}{2ab}\ge0\)

Đẳng thức xảy ra khi \(\left(a;b\right)=\left\{\left(1;2\right),\left(2;1\right)\right\}\) .

P/s: Em không chắc lắm.

NV
6 tháng 1 2019

Do \(-1\le a\le2\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2-a-2\le0\)

Tương tự ta có: \(\left\{{}\begin{matrix}b^2-b-2\le0\\c^2-c-2\le0\end{matrix}\right.\)

Cộng vế với vế ta được:

\(a^2+b^2+c^2-\left(a+b+c\right)-6\le0\)

\(\Leftrightarrow-\left(a+b+c\right)\le0\)

\(\Leftrightarrow a+b+c\ge0\) (đpcm)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-1\\c=-1\end{matrix}\right.\) và các hoán vị

2 tháng 1 2018

post ít một thôi

9 tháng 11 2017

câu naỳ hình như có trên gg cậu lên đấy mà tra nhé

9 tháng 11 2017

ừm minh trần gửi cho mk rùi