Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{1+a}\ge1-\dfrac{1}{1+b}-1-\dfrac{1}{1+c}=\dfrac{b}{1+b}+\dfrac{c}{1+c}\\\dfrac{1}{1+b}\ge1-\dfrac{1}{1+a}+1-\dfrac{1}{1+c}=\dfrac{a}{1+a}+\dfrac{c}{1+c}\\\dfrac{1}{1+c}\ge1-\dfrac{1}{1+a}+1-\dfrac{1}{1+b}=\dfrac{a}{1+a}+\dfrac{b}{1+b}\end{matrix}\right.\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{1+a}\ge\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\\\dfrac{1}{1+b}\ge\dfrac{a}{1+a}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{ac}{\left(1+a\right)\left(1+c\right)}}\\\dfrac{1}{1+c}\ge\dfrac{a}{1+a}+\dfrac{b}{1+b}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\end{matrix}\right.\)
Nhân theo từng vế
\(\Rightarrow\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\dfrac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}\)
\(\Rightarrow\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow1\ge8abc\)
\(\Rightarrow abc\le\dfrac{1}{8}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Lời giải:
Trước tiên, ta sẽ CM bất đẳng thức sau:\(P\geq \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)\((\star)\)
Thật vậy: BĐT tương đương với :
\(a^2\left (\frac{1}{b+c}-\frac{1}{a+b} \right )+b^2\left ( \frac{1}{c+a}-\frac{1}{b+c} \right )+c^2\left ( \frac{1}{a+b}-\frac{1}{a+c} \right )\geq 0\)
\(\Leftrightarrow a^2(a^2-c^2)+b^2(b^2-a^2)+c^2(c^2-b^2)\geq 0\)
\(\Leftrightarrow (a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2\geq 0\) (luôn đúng)
BĐT \((\star)\) được chứng minh .
Giờ ta chỉ cần tìm min của \(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
Để ý rằng \(A-\left(\frac{b^2}{a+b}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\right)=\sum \left(\frac{a^2-b^2}{a+b}\right)=a-b+b-c+c-a=0\)
\(\Rightarrow 2A=\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\). Sử dụng Cauchy-Schwarz:
\(2A\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{2(a+b+c)}=\frac{1008}{a+b+c}\)
Sử dụng AM_GM: \(\sqrt{2016}=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\geq \frac{a+b}{\sqrt{2}}+\frac{b+c}{\sqrt{2}}+\frac{c+a}{\sqrt{2}}\)
\(\Leftrightarrow a+b+c\leq 12\sqrt{7}\) suy ra \(A\geq 6\sqrt{7}\) suy ra \(P_{\min}=6\sqrt{7}\)
Dấu bằng xảy ra khi \(a=b=c=4\sqrt{7}\)
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
1,
a) Ta có \(a^2-ab+b^2=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)
Dấu "=" xảy ra khi a=b=0, trái với a3+b3>0
=> a2-ab+b2>0, mà
a3+b3=(a+b)(a2-ab+b2)>0
=> a+b>0
Lại có a,b thuộc Z nên a2-ab+b2 >= 1 nên a3+b3 >=a+b
Dấu "=" xảy ra khi (a;b) \(\in\){(1;1);(1;0);(0;1)}
b) Ta xét 2 TH
-Nếu ab =< 0, ta có:
a3+b3=(a+b)(a2-ab+b2) >= (a+b)(a2+b2)>= a2+b2, do a+b >=1
-Nếu ab>0 kết hợp với a+b>0 => a>0; b>0 dẫn tới a+b >=2
=> a3+b3=(a+b)(a2-ab+b2) >=2(a2-ab+b2)
=a2+b2+(a-b)2 >= a2+b2
Dẫn tới a3+b3 >= a2+b2
Dấu "=" xảy ra khi (a;b) \(\in\){(1;1);(1;0);(0;1)}
Nhận xét : P > 0
P đạt giá trị nhỏ nhất <=> \(P^2\) đạt giá trị nhỏ nhất.
Ta có : \(P^2=\frac{\left(a^2+b^2+1\right)^2}{\left(a-b\right)^2}=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right)+1}{\left(a^2+b^2\right)-2ab}\)
\(=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right)+1}{a^2+b^2-8}\)
Đặt \(t=a^2+b^2,P^2=y\) \(\Rightarrow y=\frac{t^2+2t+1}{t-8}\)
\(\Rightarrow y\left(t-8\right)=t^2+2t+1\Leftrightarrow t^2+t\left(2-y\right)+\left(1+8y\right)=0\)
Để pt có nghiệm thì \(\Delta=\left(2-y\right)^2-4\left(1+8y\right)=y^2-36y\ge0\)
\(\Leftrightarrow y\left(y-36\right)\ge0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}y\ge36\left(\text{nhận}\right)\\y\le0\left(\text{loại}\right)\end{array}\right.\)
Suy ra \(y=P^2\ge36\Rightarrow P\ge6\).
Dấu "=" xảy ra khi \(\frac{\left(t+1\right)^2}{t-8}=36\Leftrightarrow t=17\)
\(\Rightarrow\begin{cases}ab=4\\a^2+b^2=17\end{cases}\) \(\Leftrightarrow\begin{cases}a=4\\b=1\end{cases}\) (vì a > b)
Vậy P đạt giá trị nhỏ nhất bằng 6 khi (a;b) = (4;1)
cảm ưn bạn nhiều nha