Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/x + 1/y = 1/2018
<=> 1/x = 1/2018 - 1/y = (y - 2018)/(2018y)
<=> x = 2018y/(y - 2018)
=> x + y = 2018y/(y - 2018) + y = y^2/(y - 2018)
=> x - 2018 = 2018y/(y - 2018) - 2018 = 2018^2/(y - 2018)
=> P = 1
Ta có:
\(\frac{1}{1+a}+\frac{2017}{2017+b}+\frac{2018}{2018+c}\le1\)
\(\Leftrightarrow\frac{a}{1+a}\ge\frac{2017}{2017+b}+\frac{2018}{2018+c}\ge2\sqrt{\frac{2017.2018}{\left(2017+b\right)\left(2018+c\right)}}\left(1\right)\)
Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{b}{2017+b}\ge2\sqrt{\frac{2018}{\left(1+a\right)\left(2018+c\right)}}\left(2\right)\\\frac{c}{2018+c}\ge2\sqrt{\frac{2017}{\left(1+a\right)\left(2017+b\right)}}\left(3\right)\end{cases}}\)
Lấy (1), (2), (3) nhân vế theo vế rút gọi ta được
\(abc\ge2\sqrt{2017.2018}.2.\sqrt{2018}.2.\sqrt{2017}=8.2017.2018\)
\(\frac{a^4}{2018}+\frac{b^4}{2019}=\frac{1}{4037}\)
\(\Leftrightarrow\frac{2019a^4+2018b^4}{2018\cdot2019}=\frac{a^2+b^2}{2018+2019}\)
\(\Leftrightarrow\left(2018+2019\right)\left(2019a^4+2018b^4\right)=2018\cdot2019\left(a^2+b^2\right)\)
\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4+2018\cdot2019\cdot a^4+2018\cdot2019b^4=2018\cdot2019\cdot a^2+2018\cdot2019\cdot b^2\)
\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4=2018\cdot2019\cdot a^2\left(1-a^2\right)+2018\cdot2019\cdot b^2\left(1-b^2\right)\)
\(\Leftrightarrow\left(2019a^2\right)^2+\left(2018b^2\right)^2=2\cdot2018\cdot2019\cdot a^2\cdot b^2\)
\(\Leftrightarrow\left(2019a^2-2018b^2\right)=0\)
\(\Leftrightarrow2019a^2=2018b^2\Leftrightarrow\frac{a^2}{2018}=\frac{b^2}{2019}=\frac{a^2+b^2}{2018+2019}=\frac{1}{4037}\)
\(\Rightarrow\frac{a^{2018}}{2018^{10009}}=\frac{b^{2018}}{2019^{1009}}=\frac{1}{4037^{1009}}\)
\(\Rightarrow P=\frac{2}{4037^{1009}}\)