Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a^2+3a=b^2+3b=2=>a^2+3a-b^2-3b=0\)
\(=>\left(a-b\right)\left(a+b\right)+3\left(a-b\right)=0\)
\(=>\left(a-b\right)\left(a+b+3\right)=0\)
\(=>\orbr{\begin{cases}a-b=0\\a+b+3=0\end{cases}=>\orbr{\begin{cases}a=b\\a+b=-3\end{cases}}}=>\orbr{\begin{cases}a+b=2a=2b\\a+b=-3\end{cases}}\)
\(a^2+3a=b^2+3b=2\)
\(\Rightarrow a^2+3a-b^2-3b=0\)
\(\Rightarrow\left(a-b\right).\left(a+b\right)+3.\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right).\left(a+b+3\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a+b=-3\end{cases}}\)
Vì a,b là các số thực phân biệt => a+b=-3
Ta có: \(a^2+4b=b^2+4a\) <=> \(a^2-b^2-4a+4b=0\)
<=> \(\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)
<=> \(\left(a-b\right)\left(a+b-4\right)=0\)
<=> \(\orbr{\begin{cases}a=b\left(loại\right)\\a+b=4\end{cases}}\)(vì a,b phân biệt)
a ) => S = a + b = 4
b) Ta có: \(a^2+4b=7\) <=> \(a\left(a+b\right)-ab+4b=7\)
<=> \(4a-ab+4b=7\) <=> \(4\left(a+b\right)-7=ab\) <=> \(ab=4.4-7=9\)
Do đó: Q = a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3ab(a + b) = 43 - 3.9.4 = -44
a^2+4b=b^2+4a
=> (a-b)(a+b)-4(a+b)=0
=>(a-b-4)(a+b)=0
Đến đây đơn giản mà ^^ em ko làm được thì ib nhé.
Bài làm:
Ta có: \(a^2+4b=b^2+4a\)
\(\Leftrightarrow\left(a^2-b^2\right)-\left(4a-4b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a+b-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}a=0\\a+b=4\end{cases}}\)
+ Nếu \(a=0\Rightarrow4b=7\Leftrightarrow b=\frac{7}{4}\)
Thay vào tính được:
a) \(S=a+b=0+\frac{7}{4}=\frac{7}{4}\)
b) \(Q=a^3+b^3=0^3+\left(\frac{7}{4}\right)^3=\frac{343}{64}\)
+ Nếu \(a+b=4\Rightarrow b=4-a\)
Thay vào tính được:
a) \(S=a+b=4\)
b) \(b=4-a\Leftrightarrow a^2+4\left(4-a\right)=7\)
\(\Leftrightarrow a^2-4a+9=0\)
\(\Leftrightarrow\left(a-2\right)^2+5=0\)
\(\Rightarrow∄a\)
Làm tạm vào đây vậy
từ gt dễ dàng => \(ab+bc+ca\le3\)
\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
Áp dụng cô si ta có
\(\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)
Tương tự như vậy rồi ccộng vào nhá nhok
bạn phải phân tích được số chính phương là gì
đề bài cho thuộc mấy trường hợp
đề bài này thuộc dạng tìm a và b đó
mình biết khó lắm cố gắng và có gắng lên nhé
chúc bạn làm bài thành công!\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(a^3+3a=b^3+3b=2=>a^2+3a-b^2-3b=0\)
\(=>\left(a-b\right)\left(a+b\right)+3\left(a-b\right)=0\)
\(=>\left(a-b\right)\left(a+b+3\right)=0\)
\(=>\orbr{\begin{cases}a-b=0\\a+b+3=0\end{cases}=>\orbr{\begin{cases}a+b=2a=2b\\a+b=-3\end{cases}}}\)