cho a, b là số hữu tỉ

a/(a+2b) + 2b/(2a+b) là số nguy...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2023

`a/(a+2b)+(2b)/(2a+b)=(2a^2+3ab+4b^2)/(2a^2+5ab+2b^2)=((2a^2+5ab+2b^2)-2b(a-b))/(2a^2+5ab+2b^2)=1-(2b(a-b))/(2a^2+5ab+2b^2)\inZZ`

`=>(2b(a-b))/(2a^2+5ab+2b^2)\inZZ(1)`

Để `(1)` luôn đúng thì `=>a=b` `(` với `,b` không vi phạm điều kiện toán học `)`

16 tháng 6 2023

đk ở đây a, b hữu tỉ >0

Em giải hướng 2b(a-b) ≥0 => p/s số ≥0

2b<a+2b; a-b<2a+b => p/s < 1

=> p/s = 0 => 2b(a-b) = 0

2b hoặc a-b = 0

Do b>0 => 2b>0 => a-b = 0

=> a = b

đúng không ạ

31 tháng 7 2017

Với 2 số

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Đẳng thức xảy ra  \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

Với 3 số

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Đẳng thức xảy ra  \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

31 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(\frac{3}{a+2b}+\frac{3}{b+2a}=3\left(\frac{1}{a+2b}+\frac{1}{b+2a}\right)\ge\frac{3.\left(1+1\right)^2}{a+2b+b+2a}=\frac{3.4}{3\left(a+b\right)}=\frac{4}{a+b}\)

Đẳng thức xảy ra  \(\Leftrightarrow a=b\)

27 tháng 10 2016

Đặt phép chia đc x4+x3+ax2+(a+b)x+2b+1=(x3+ax+b)(x+1)+(b+1)

Để..chia hết cho... thì b+1=0=>b=-1 (a tùy ý)

Vậy a tùy ý;b=-1


 

24 tháng 10 2016

CTV ƠI LÀ CTV 

17 tháng 8 2018

áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm

17 tháng 8 2018

\(a^2+b^2+2\ge2\left(a+b\right)\)

\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)

\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)

Vậy ...

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 
3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 Đúng 3  Sai 0 Sky Blue đã chọn câu trả lời này.
 
26 tháng 4 2016

giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp 

nên 2b+c-2c-a = 2b-a-c chia hết cho 3

lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3

tương tự ta có c-a và a-b chia hết cho 3

cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81

2 tháng 8 2017

Ta có : a3 + b= (a + b)(a - ab + b)

Thay ab = 4 và a + b = 5

=> a3 + b= 5(5 - 4)

=> a3 + b= 5

Vậy a3 + b= 5

15 tháng 8 2019

a,

Ta có: \(a\left(b+1\right)b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)

\(\Rightarrow ab=\left(a+1\right)\left(b+1\right):\left(a+1\right)\left(b+1\right)=1\)

=>đpcm

b,

Ta có: \(2\left(a+1\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)

\(\Rightarrow2a+2=a+b+2\)

\(\Rightarrow a-b=0\)

\(\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2+b^2=2\) (đpcm)