K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 7 2020

Lời giải:

$a^{2014}+b^{2014}=a^{2015}+b^{2015}$

$\Leftrightarrow a^{2014}(a-1)+b^{2014}(b-1)=0(1)$

$a^{2015}+b^{2015}=a^{2016}+b^{2016}$

$\Leftrightarrow a^{2015}(a-1)+b^{2015}(b-1)=0(2)$

Lấy $(2)-(1)$ theo vế thu được: $a^{2014}(a-1)^2+b^{2014}(b-1)^2=0$

Ta thấy $a^{2014}(a-1)^2\geq 0; b^{2014}(b-1)^2\geq 0$ nên để tổng của chúng bằng $0$ thì:

$a^{2014}(a-1)^2=b^{2014}(b-1)^2=0$

Mà $a,b>0$ nên $a=b=1$

Do đó $S=2$