K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Hướng dẫn làm bài:

a) Vì M nằm trên d, d là trung trực của AB nên MA = MB (1)

Vì nên đoạn thẳng NB cắt d tại M suy ra M nằm giữa N và B.

Hay NM + MB = NB (2)

Từ (1) và (2) => NB = MA + NM

b) Gọi AN’ cắt d tại I

Trong tam giác N’IB có : N’B < IN’ + IB

Mà IA = IB (I thuộc trung trực của AB)

=> N’B < IN’ + NA => N’B < AN’

c) Vì LA < LB nên L không thuộc d, theo chứng minh câu b suy ra L thuộc PA.



19 tháng 4 2017

a) Vì M nằm trên d, d là trung trực của AB nên MA = MB (1)

Vì nên đoạn thẳng NB cắt d tại M suy ra M nằm giữa N và B.

Hay NM + MB = NB (2)

Từ (1) và (2) => NB = MA + NM

b) Gọi AN’ cắt d tại I

Trong tam giác N’IB có : N’B < IN’ + IB

Mà IA = IB (I thuộc trung trực của AB)

=> N’B < IN’ + NA => N’B < AN’

c) Vì LA < LB nên L không thuộc d, theo chứng minh câu b suy ra L thuộc PA.



a. Gọi C là giao điểm của MB với đường thẳng d.

Ta có: MB=MC+CB

mà CA=CB(tính chất đường trung trực)

Suy ra: MB=MC+CA(1)

Trong ΔMAC ta có:

MA<MC+CA(bất đẳng thức tam giác)(2)

Từ (1) và (2) suy ra: MA<MB

b.Gọi D là giao điểm của NA với đường thẳng d.

Ta có: NA=ND+DA

mà DA=DB(tính chất đường trung trực)

Suy ra: NA=ND+DB(3)

Trong ΔNDB, ta có:

NB<ND+DB (bất đẳng thức tam giác) (4)

Từ (3) và (4) suy ra: NA>NB

c) Theo phần a và b; với điểm H bất kì ta có:

+ Nếu H nằm trong phần PA thì HA < HB.

+ Nếu H nằm trong phần PB thì HB < HA.

+ Nếu H nằm trên đường thẳng d thì HA = HB (tính chất đường trung trực)

Do đó, để KA < KB thì K nằm trong phần PA.

12 tháng 5 2018

a)

Ta có M nằm trên đường trung trực của AB nên MA=MB.

Vì M nằm trên đoạn NB nên:

    NB=NM+MB hay NB=NM+MA (vì MB=MA)

Vậy NB=NM+MA

Trong ΔNMA có: NA<NM+MA

Vì NM+MA=NB nên NA<NB (đpcm) 

b) 

Nối N′A cắt d tại P. Vì P nằm trên đường trung trực của đoạn AB nên: PA=PB

Ta có: N′A=N′P+PA=N′P+PB

Trong ΔN′PB ta có: N′B<N′P+PB

Do đó: N′B<N′A(đpcm)

c)

Vì LA<LB nên L không thuộc đường trung trực d.

Từ câu b) ta suy ra với điểm N′bất kì thuộc PB thì ta có N′B<N′A. Do đó, để LA<LB thì L không thuộc PB.

Từ câu a) ta suy ra với điểm N bất kì thuộc PA thì ta có NA<NB. Do đó, để LA<LB thì Lthuộc PA.

16 tháng 1 2017

a) Vì d là đường trug trực của AB mà C,D thuộc d nên: AC=BC =>tam giác ACB cân tại C=> Góc CAB= góc CBA   (1)

                                                                                 AD=BD=>tam giácABD cân tại D=> Góc DAB= góc DBA      (2)

  TỪ (1) và

18 tháng 1 2017

Chơi cả hỏi trên mạng à.

29 tháng 7 2019

Xét hai tam giác BAD và tam giác CAD, có:

BA=CA (do A thuộc đường trung trực của BC)

AD chung 

BI=CI (do I thuộc đường trung trực BC)

Vậy tam giác BAD=tam giác CAD

Suy ra: góc BAD=góc CAD(hai góc tương ứng)

Vậy AD là tia phân giác của góc BAC (đpcm)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau