Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4=a^2+\frac{1}{a^2}+a^2+\frac{b^2}{4}\ge2\sqrt{\frac{a^2}{a^2}}+2\sqrt{\frac{a^2b^2}{4}}\)
\(\Rightarrow4\ge2+ab\Rightarrow ab\le2\)
\(\Rightarrow P_{max}=2\) khi \(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a=-1\\b=-2\end{matrix}\right.\)
a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )
\(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)
b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x
<=> 1-2x thuộc Ư(2) = {1;2;-1;-2}
Nếu 1-2x = 1 thì 2x = 0 => x= 0
Nếu 1-2x = 2 thì 2x = -1 => x = -1/2
Nếu 1-2x = -1 thì 2x = 2 => x =1
Nếu 1-2x = -2 thì 2x = 3 => x = 3/2
Vậy ....
Ta có : \(7a^2+b^2=8ab\)
<=> \(7a^2-7ab+b^2-ab=0\)
<=> \(7a\left(a-b\right)-b\left(a-b\right)=0\)
<=> \(\left(7a-b\right)\left(a-b\right)=0\)
<=> \(\orbr{\begin{cases}a=\frac{b}{7}\\a=b\end{cases}}\)
Với \(a=\frac{b}{7}\) => \(M=1+\frac{b}{\frac{b}{7}}=1+7=8\)
Với a = b => \(M=1+1=2\)
Thanks bạn nha!